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Abstract The conditional-recency dissociation between im-
mediate and delayed free recall FR; Farrell (Journal of Exper-
imental Psychology: Learning, Memory, and Cognition, 36,
324-347, 2010) has critical implications regarding the
prolonged debate between unitary and dual-store models of
memory. In immediate FR, when the availability of items is
controlled for, the recency of the final list item increases across
the first few output positions. No such increase is found in
delayed FR, with a trend in the opposite direction. This disso-
ciation challenges temporal context TCM; Howard & Kahana
(Journal of Mathematical Psychology, 46, 269—299, 2002) and
distinctiveness SIMPLE; Brown, Neath, & Chater (Psycholog-
ical Review, 114, 539-576, 2007) unitary models of memory
and suggests the involvement of a short-term buffer in imme-
diate FR. We show that this dissociation is confounded with the
different magnitudes of nominal recency (i.e., the prevalence of
the final list item) found in immediate as compared to delayed
FR. By reshuffling output orders and comparing the empirical
results to those of a null hypothesis of no output-order effect,
we controlled for the greater prevalence of the final list item
that has been observed in immediate FR. Under this control, we
found no evidence for a dissociation in the tendency to recall
the final list item across output positions. This finding suggests
that the conditional-recency dissociation imposes no new con-
straint on unitary models of memory. More generally, we
demonstrate how biases that influence measures of output-
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order tendencies (e.g., conditional recency) can be controlled
for, thus yielding “purer” measures of these variables.

Keywords Free recall - Recency - Output position -
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Short-term buffer - Computational modeling - Permutation test

One of the longest debates in the history of memory research
has been between unitary-store models, which do not postu-
late the existence of a short-term memory (STM) buffer, and
dual-store models, which do postulate the existence of such a
buffer. The current version of this debate was well reflected in
a series of articles (Davelaar, Goshen-Gottstein, Ashkenazi,
Haarmann, & Usher, 2005; Kahana, Sederberg, & Howard,
2008; Sederberg, Howard, & Kahana, 2008; Usher, Davelaar,
Haarmann, & Goshen-Gottstein, 2008). The debate focused
on two points. The first was theoretical, centering on the
question of whether unitary models implicitly incorporate a
short-term buffer or are truly unitary. The second point was
empirical, relating to the abilities of the two types of models to
adequately fit the existing body of data. Although the debate
was in no way resolved, there is solace in the conformity of
opinion within the articles regarding the critical data that need
to be addressed—specifically, data that describe the multiplic-
ity of findings regarding the recency effect. Indeed, both
positions of the debate interpreted the very same set of key
empirical phenomena, but in entirely different ways.

The present article addresses a novel empirical finding, the
conditional-recency dissociation between immediate and de-
layed free recall (Farrell, 2010). This dissociation was re-
vealed when the calculation of the probability of retrieval of
the final list item as a function of output position took into
account only those trials in which the final list item had not
already been recalled in a previous output position; hence, the
final list item was—so to speak—still “available” for retrieval
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(see the next section for a detailed numeric example and
rationale). The computation of recency, conditional on the
availability of the final list item for retrieval, is aptly dubbed
“conditional recency.” This dissociation was cited in the debate
as providing evidence for a dual-store approach, and critically,
it seems to be the only known recency-related effect that
ostensibly cannot be interpreted by unitary models. Below,
we describe this dissociation and the challenge that it poses to
unitary models. It is important to note from the outset that
Farrell conducted further analyses, ranging beyond this disso-
ciation, to which we will return in the General Discussion.

In this article, we will show that the conditional-recency
dissociation may be the result of a subtle confound with nom-
inal recency. Moreover, once nominal recency is controlled for,
the conditional-recency dissociation is no longer found.! On
the positive side, our control method isolates conditional recen-
cy from the modulating effects of nominal recency. It thus
provides both theoretical clarity and the prospect of benefiting
other research that involves output-order effects.

Our analysis poses an interesting theoretical and methodo-
logical question. Farrell’s (2010) investigation embodies a
focal empirical measure (conditional recency) that unitary
models fail to adequately fit, thereby compromising their
status. This failure remains, even after our demonstration that
this measure is confounded by nominal recency. Critically,
once this confound is controlled for, the key dissociation—
conditional recency—is no longer statistically significant.
This raises the question of whether the status of extant theories
and models should still be compromised, even though they
fail to fit empirical effects that are nonsignificant once an
adequate control is applied.

On the one hand, it could be argued that issues of confounds
are important with respect to the theoretical validity of empir-
ical effects, but are less so with respect to model fitting. Thus, a
model’s failure to fit any behavioral aspect of the data should
count as evidence against its validity. This holds, even if this
aspect confounds several psychological influences or if it de-
scribes an effect that, once an appropriate control is applied,
does not reach an adequate level of statistical significance.

On the other hand, it is reasonable to assume that had the
confound been uncovered “in time,” then data fitting of the
null effect would not have been undertaken in the first place,
let alone have survived the peer-review process. We suggest

! Note that the second author of this article has, in the past, advocated the
notion that the recency effect reflects the operation of an STM store
(Davelaar et al., 2005; Usher et al., 2008; but see Howard, Venkatadass,
Norman, & Kahana, 2007). Indeed, Farrell’s (2010) novel dissociation
and modeling of the data bolsters this very notion. Still, here we argue that
this dissociation cannot tip the balance of evidence between unitary- and
dual-store models and does not provide autonomous corroboration for the
existence of a short-term store.

that in the current state of research, any model is at best a
“crude” approximation of actual mnemonic processes, and
that currently no model can be expected to fit the entire
plethora of empirical patterns. Thus, we posit that for the
purpose of scientific clarity, it is constructive to place the
hurdles of theoretical validity and statistical significance on
empirical effects before devaluating models that fail to track
them. If it is discovered that model-devaluating effects are
indeed confounded with undesired influences, then the
model’s initial validity should be reinstated.

We find merit in both of these views. Forced to choose
between them, we side with the latter. Nevertheless, we be-
lieve that the issue is not clear cut, and that it is important for
the scientific community to address this question, in that it
influences the way that science is conducted and published,
and because it hinges on issues of the philosophy and sociol-
ogy of science.

A tale of two recencies: Nominal recency and conditional
recency

In immediate free recall (FR), participants study a list of items
(e.g., words) and are then asked immediately to recall all items
that they can, in any order. The robust finding is that items
presented in the last serial positions of the study list—recency
items—are recalled with higher probability than are pre-
recency items: This is the (nominal) recency effect
(Murdock, 1962). This finding is revealed by a monotonic
increase in the “recency portion” of the serial-position curve.

In delayed FR, in contrast, the study phase is followed by a
delay, during which an attention-demanding distractor task is
given, so as to prevent participants from rehearsing the items.
Critically, relative to immediate FR, recency effects in delayed
FR are reduced or entirely eliminated (e.g., Glanzer & Cunitz,
1966; Postman & Phillips, 1965). This dissociation between
immediate and delayed FR with respect to recency is still
considered by some (Davelaar et al., 2005; Lehman &
Malmberg, 2013) as being support for dual-store models of
episodic memory, comprising a short-term and a long-term
store. These models assume that recency items reap their gain
in immediate FR by being retrieved from the “memory buffer”
or the short-term store. In delayed FR, on the other hand,
distractor activity presumably eliminates the possibility of
rehearsing the items or replaces the item information in the
buffer, and thus the advantage of recency items is reduced or
even eliminated (Atkinson & Shiffrin, 1968).

However, this dissociation can also be interpreted by the-
ories that conceptualize memory as a unitary entity. Specifi-
cally, as compared to pre-recency items, recency items may
enjoy either enhanced overlap between their encoding context
and the retrieval context (TCM; Howard & Kahana, 2002) or
enhanced discriminability (SIMPLE; Brown, Neath, &
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Chater, 2007). Such enhancements may mediate the facilitated
recall of recency items in immediate FR and, in addition, may
dissipate during the end-of-list distraction task, resulting in
reduced recency in delayed FR (cf. the ratio rule; Bjork &
Whitten, 1974; Glenberg et al., 1980).

In contrast to the standard (nominal) recency effect, the
novel empirical dissociation discovered by Farrell (2010) is
that of conditional recency. Farrell found that in immediate
FR, the tendency to recall the final list item—that is, the one
presented last in the study list—increases as output position
increases. No such increase is found in delayed FR, and if
anything, those data reveal a decreasing tendency to recall the
last item as a function of output position.

Let us clarify some terminology. Conditional-recency is
computed by controlling for the availability of the final list
item. Throughout the article—and as defined by Farrell—
when referring to the “availability” of the final list item we
mean that the final list item had not been recalled in previous
output positions in the current recall trial. Note that the term
trial refers to the entire set of recalled items from a single
studied list. Individual items recalled within the trial are des-
ignated by their corresponding output positions. To illustrate
an imaginary recall trial, a participant may have studied an
eight-word list (here each letter represents a unique word): 4,
B,C,D,E,F, G,and H. Later, at test, if she recalled five
items in the following order—B, H, D, C, A—then these five
items would constitute a single recall trial, with “B” appearing
in Output Position 1, “H” in Output Position 2, and so forth.
The term serial position refers to the order of the individual
items at study, so in this example, “A” appears in Serial
Position 1, “B” in Serial Position 2, and “H” is the final list
item.

To illustrate the computation of conditional recency, con-
sider a participant who studied 100 unique lists and performed
100 delayed FR trials of these lists. Suppose that she recalled
the final list item in the Output Position 1 in 20 trials and in
Output Position 2 in 10 trials. Because no output precedes the
first recall, the final list item was available on all 100 trials.
Therefore, for Output Position 1, the ensuing conditional (as
well as nominal) probability is 20 %. Considering Output
Position 2, the final list item was available only on the
remaining 80 trials. Therefore, whereas the nominal probabil-
ity of recalling the final list item is 10 % (10 out of 100 trials),
the conditional probability is 12.5 % (10 of the remaining 80
trials).

In this example, the 20 % (conditional) probability of recall
in Output Position 1 of the final list item was larger than recall
of'this item in Output Position 2 (12.5 %). This pattern mirrors
that reported by Farrell (2010) in delayed FR, in which,
conditional on availability, the probability of recall of the final
list items showed a tendency to decrease as the output un-
folded. Surprisingly, Farrell found a dissociation between
immediate and delayed FR, with an effect in the opposite

@ Springer

direction in immediate FR: an increased tendency to recall
final list items as retrieval unfolded. To illustrate, had the final
list item been recalled in Output Positions 1 and 2 in 60 and 30
(typical values for immediate FR)—not 20 and 10 (typical
values for delayed FR)—of the 100 trials, respectively, the
conditional probability in Output Position 1 would have been
60 %, and would have increased to 30 out of the 40 remaining
trials, equaling 75 %, in Output Position 2. Together, these
examples demonstrate a pattern qualitatively similar to
Farrell’s dissociation, of either a decreased (delayed FR) or
an increased (immediate FR) tendency to recall the last item
across output positions.

Unlike Farrell’s (2010) finding of an increased tendency to
recall final list items as retrieval unfolds in immediate FR,
unitary theories of recall predict a decreased tendency. This is
because as retrieval unfolds, so does the passage of time,
thereby diminishing the overlap between the encoding context
of'the final list item and the evolving retrieval context, relative
to prefinal list items (or rendering the final list item less
discriminable).” Indeed, Farrell demonstrated that the dissoci-
ation challenges unitary models, which predict that the deeper
into the test-phase, the lower the probability of recalling the
final list item. In contrast, models that include a short-term
buffer—which drives the first few outputs in immediate but
not in delayed FR—can capture this dissociation.

The dissociation between immediate and delayed FR in the
propensity to recall the final list item as retrieval unfolds,
emerges when computing conditional, rather than nominal,
probabilities. But what is the rationale for computing condi-
tional rather than nominal recall probabilities? When studying
the effects that passage of time during the recall phase exerts
on the propensity to recall the final list item (in either imme-
diate or delayed FR), nominal probabilities for recalling this
item in different output position are inadequate. The reason for
this inadequacy stems from the fact that participants are, to
quote Farrell (2010), “unwilling to report prior recalls.” In

2 To be sure, this assertion is overly simplistic. Deriving predictions for
these models is far from straightforward. Consider SIMPLE, for example
(similar considerations are relevant with respect to TCM). For a specific
trial, changes in the discriminability of the final list item as output unfolds
depend on the realized recall history (i.e., which items have already been
recalled) and on the specific model parameters (i.e., alternative parameter
values could generate different predictions). Thus, definitive model pre-
dictions can be formally derived only once the model is fitted to empirical
recall data (yielding estimates of the actual parameters), and simulations
are conducted on the basis of estimated parameter values. Indeed, such an
analysis was conducted by Farrell (2010). Throughout the present article,
whenever we discuss model predictions with respect to conditional re-
cency, we will rely on the results of Farrell’s analysis. By suggesting
reasons for these predictions (diminished discriminability or contextual
overlap), we aim at capturing the gist of the operative mechanisms,
hopefully providing readers with helpful intuitions. Again, by no means
does this eliminate the necessity for a formal analysis.
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other words, if the final list item had already been recalled,
participants will attempt to avoid repeating it in subsequent
output positions. Thus, nominal probabilities confound the
focal effect of temporal delay, caused by the passage of time,
with the reduced tendency to recall the final list item due to
attempts to avoid a recall repetition. By extracting only those
trials on which the final list item has not yet been recalled,
conditional probabilities eliminate this confound, enabling a
more appropriate estimate of the effects of temporal delay.

In the sections that follow, we describe the conditional-
recency dissociation more precisely, and explain how this
dissociation is mathematically modulated—confounded—by
“overall recency”—that is, by the overall probability of
recalling the final list item.

Details of the analysis of conditional recency

The dissociation between immediate and delayed FR in con-
ditional recency (Farrell, 2010) is based on an analysis of 14
conditions taken from five experiments (Howard & Kahana,
1999; Howard, Venkatadass, Norman, & Kahana, 2007;
Murdock, 1962; Murdock & Okada, 1970). For each partici-
pant (in each condition) and for each output position k, the
recency recall probability (RRP) was calculated as the propor-
tion of trials in which the final list item was recalled in output
position &, given that it had not already been recalled in the
first £ — 1 output positions. RRP measures the tendency to
recall the final list item in each output position, conditional on
its availability. On each trial, Farrell considered all recalls up
to the first error (i.e., prior-list or extralist intrusions or repe-
titions), up to a maximum of four recalls.” For the illustrative
recall trial described above, in which our imaginary partici-
pant recalled B, H, D, C, A, Farrell would have considered
only the following items: B, H, D, C, chopping from the
analysis the fifth item, A. Next, using simple linear regression,
the slope of the RRP function across output positions was
estimated. At a descriptive level, a negative slope indicates the
tendency of recency for the final list item to decrease across
output positions, as predicted by unitary models. A positive
slope, in contrast, indicates an increasing tendency (for further
details, see Farrell, 2010). Figure 1 shows the striking results
of this analysis, with the mean slope being described as the
dependent variable. Examination of the figure reveals a strong
tendency of recency for the final list item to increase across
initial output positions in immediate FR, whereas in delayed
FR the trend is toward a decreasing, albeit nonsignificant,
recency for the final list item. This pattern was supported

3 Following the fourth output position, some of the RRP curves changed
direction (e.g., from increasing to decreasing; see, Farrell, 2010, for a
detailed analysis).

formally by the appropriate multilevel linear regression
analysis.

Next, to mitigate concerns of confounds due to the diverse
experimental methodologies across studies, Farrell undertook
a detailed examination of the single experiment that had used
a repeated measures design for both immediate and delayed
recall (Howard & Kahana, 1999, Exp. 1). Here, too, a higher
mean RRP slope was found in immediate than in delayed FR.

Farrell (2010) also noted that the magnitude of the RRP
slope, which ostensibly reflects the operation of the mecha-
nism underlying recall, may be positively biased by the math-
ematical property of the diminishing size of the pool of
available items as output unfolds. For example, for a 20-
word list, under total random recall, the conditional probabil-
ity (and also the nominal probability) of recalling the final list
item in Output Position 1 is 1/20, which increases to 1/19 for
Output Position 2 simply because, if the final list item is still
available, it is now one of 19, rather than 20, candidates for
output.

To address this concern, Farrell (2010) calculated for each
participant a control slope (see the dashed lines in Fig. 1) and
subtracted these slopes from the RRP slopes. Examination of
the figure reveals that the diminishing pool of available words
biases RRP slopes only slightly and cannot account for the
dissociation between immediate and delayed FR. This disso-
ciation, therefore, must reflect an intrinsic property of the
retrieval dynamics of free recall. We next argue that the
diminishing word-pool size was not the only confound that
required control.

Conditional recency is confounded with recency

The main purpose of the conditional-recency slope is to gauge
the tendency of the final list item to be recalled in different
output positions. However, as we now explain, it turns out that
this slope is highly modulated by the level of nominal recency
for the final list item and that this modulation is—like in the
case of a diminishing word pool-—a mathematical property of
the measure rather than a function of the theoretical construct
that conditional recency purports to index. We then present a
novel method that estimates the tendency of the final list item
to manifest as output unfolds, free from the mathematical
biasing effects of nominal recency.

Consider a “hypothetical participant,” reflecting an imagi-
nary psychological mechanism, who recalls items in different
serial positions according to a fixed probability distribution
(i.e., the probabilities described by the classic serial-position
curve). Critically, the participant recalls items in a random
output order. Specifically, across trials, the final list item
appears with equal probability in each of the output positions.
For this participant—irrespective of the prevalence of the final
list item—the final list item should show no special tendency
to manifest in any particular output position, because output
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Fig. 1 Mean slopes predicting the conditional next-recall probability of
the last list item from output position, for Output Positions 1-4. Immedi-
ate free recall conditions are grouped on the left, and delayed free recall
conditions are grouped on the right. For each condition, results are
displayed for the data (squares), the temporal context model (TCM;
circles), and SIMPLE (crosses). The conditions are, from left to right,
the immediate recall condition of Experiment 1 of Howard and Kahana
(1999; H&K); the experimental condition of Murdock and Okada (1970;
M&O); the six conditions of Murdock (1962), with the first number of
each label giving list length, and the second, the presentation time per
item, in seconds; the experimental condition of Howard et al. (2007;

order is random. It turns out, however, that in contrast to the
anticipated absence of such tendency, the RRP slope of our
hypothetical participant does vary, and considerably so, as a
function of the prevalence of the final list item (i.e., the overall
nominal recency). Thus, an appropriate control for the preva-
lence of the final list item is required before conclusions from
the pattern of the RRP-slope dissociation can be drawn.*

To demonstrate this idea, and for simplicity’s sake, consid-
er the case in which our participant recalls two items per trial.
Let us first consider a case in which the nominal rate of
recency for the final list item is 30 % (not unlike that found
in delayed FR). Here, our participant would recall the final list
items in Output Position 1 in 15 % of the trials, and in Output
Position 2 in another 15 % of the trials, with Farrell’s measure
of conditional recency yielding the values of RRP(1) = .15,
RRP(2) = .15/.85, and a miniscule slope—computed as
RRP(2) — RRP(1)—equal to .0265. In contrast, if the nominal
rate of recency for the final list item were 80 % (not unlike that
found in immediate FR), with 40 % in each of the two output
positions, the calculations would yield RRP(1) = .4, RRP(2) =
.4/.6, with a slope more than 10 times larger (.2667) than that
found under a nominal recency of 30 %.

Thus, the RRP slope varies considerably as a function of
the frequency of the final list item. If so, it is possible that the
same underlying (decreasing) tendency of the final list item to
manifest across different output positions exists in both im-
mediate and delayed FR and that the larger (positive) slope
observed in immediate FR may simply reflect the amplified

* Note that Farrell (2010) controlled for the diminishing size of the pool
of available items, but not for the prevalence of the final list item.
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HVNK); the delayed free recall condition of Experiment 1 of Howard
and Kahana (1999); and the four conditions of Experiment 2 of Howard
and Kahana (1999), with the labels indicating the durations of continuous
distraction between items at presentation. Error bars show single-sample
confidence intervals. ISL, interstimulus interval (in seconds). From “Dis-
sociating Conditional Recency in Immediate and Delayed Free Recall: A
Challenge for Unitary Models of Recency,” by S. Farrell, 2010, Journal
of Experimental Psychology: Learning, Memory, and Cognition, 36, p.
326. Copyright 2010 by the American Psychological Association.
Reprinted with permission

bias, due to the larger levels of overall recency for the final list
item, in this condition.

Let us be clear. In arguing that recency and conditional
recency are confounded, we mean that if the same propensity
to recall the final list item across output positions is operative
in both immediate and delayed FR, then a difference in the
overall level of recency for the final list item would bias the
slopes such that a higher empirically estimated slope for
immediate FR would be found. Importantly, one must not
misinterpret this modulating relation by assuming that condi-
tional recency is simply an equivalent measure of the overall
level of recency. Indeed, highly variable levels of conditional
recency could be realized due to the intrinsic characteristics of
retrieval dynamics, even when the overall level of recency for
the final list item is invariant, and hence biases conditional
recency to the same extent.’

> Suppose, for example, that a participant always recalls two items and
that the final list item is recalled in Output Position 1 on 10 % of the trials,
and in Output Position 2 on 20 % of the remaining 90 % of the trials. In
total, the final list item is recalled on 10 % + 18 % = 28 % of the trials,
RRP(1) =.1, RRP(2) = .2, and the RRP slope is .1. On the other hand, if
the final list item is never recalled in Output Position 1 but is recalled on
28 % of the trials in Output Position 2, then the overall level of recall
(28 %) of the final list item is invariant, but now RRP(1) = 0, RRP(2) =
.28, and the slope is .28.

Different models of memory may produce similar levels of overall
recency and yet differ substantially in the conditional-recency slopes that
they produce. See the simulations reported in Farrell (2010), in which
both the TCM and the forward-buffer version did reasonable jobs of
capturing overall recency, but differed substantially in the slopes that they
produced.
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A reanalysis of condition recency when controlling
for nominal recency for the final list item

We now present a new control, the random-order control,
which provides a general method of controlling for interfering
influences when measuring any variable (e.g., the RRP slope)
that embodies a theoretical tendency that manifests across
output positions (we denote such a variable as V). After
presenting the method, we will apply it to the conditional-
recency dissociation.

The first step is to compute the variable V' (e.g., the
conditional-recency slope) from the empirical data in order
to obtain the empirical measurement V 4,,,. The empirical
measure Vg, might be influenced by confounding variables
that do not reflect output order per se, and thus that might bias
it (e.g., the last-item nominal level of recency, the total number
of items recalled, or the length distribution of the recall trials).
To control for these undesired influences, we randomly per-
mute each of the recall trials of the participant. The permuted
set of trials can be viewed as reflecting an imaginary partici-
pant who is equivalent to the actual participant with respect to
all of the structural components of the recall sequence, save
output order. We then calculate V' for the participant in the
exact same manner as V4., was calculated, but for the per-
muted instead of the empirical data—thus obtaining ¥ perm(1).
By repeating this procedure a large number of times M (each
time randomly permuting each of the recall trials), we can
obtain a distribution of control measurements Verm(1),
Vperm@) - - - » Vpermn)- We can then measure the “extremity”
of our empirical measurement V4., relative to the control
distribution (e.g., by z score).

Critically, by permuting each of the recall trials, we pre-
serve the structural quality of the empirical data (such as the
recall content and the lengths of the recall trials), only
allowing output order to vary. Note that across the M sets of
random permutations (of each of the recall trials), any system-
atic output-order effects are eliminated. Thus, comparing V g,
to the control distribution allows for isolating the focal output-
order effects, free from the influence of any other biasing
structural variables of the recalled data.

The rationale behind this control method is similar to that
of the statistical, nonparametric permutation test (also called a
randomization test, rerandomization test, or exact test). In the
permutation test, it is possible to test whether a given exper-
imental effect is significant with respect to a control distribu-
tion of that effect. When an effect that manifests across exper-
imental conditions is of interest, the control distribution is
generated by a repetition of the following steps: (1) randomly
reshuffling (i.e., permuting) the condition labels (e.g., Condi-
tion 1, Condition 2, . . .) of the empirical observations and (2)
calculating the effect of interest for the reshuffled data set, in
the same manner as for the actual empirical data. Following
random permutations, any difference between the conditions

with respect to output position is random. Thus, the control
distribution provides a “null effect” baseline, with respect to
which the significance of the observed effect is gauged.

Our control procedure operates using a very similar logic.
Here, the reshuffled labels are the output positions (e.g., 1, 2,
3, 4), akin to the experimental conditions in the permutation
test; the empirical observations are the recalled items (desig-
nated by their serial positions at study); and the effect of
interest is the RRP slope. Specifically, for each participant,
we created one permutation for each of the recall trials, up to
the fourth output position (because only the first four output
positions participated in the present analysis) or up to the first
recall error or repetition, in order to generate a “control”
distribution. To illustrate, in the imaginary recall trial de-
scribed above, the participant recalled five items in the order
B, H, D, C, A. The first step in our analysis is to extract only
Output Positions 14, because only these output positions
participated in Farrell’s analysis. Thus, we are left with B, H,
D, C (with Output Position 5—A—being eliminated from the
analysis). Next, we permute the output positions of these four
items among themselves. Possible permutations include H, B,
C, D and D, H, B, C. After each trial is randomly permuted
(once), we calculated an RRP slope for the set of permuted
trials—all comprising only up to the first four output posi-
tions. This calculation is identical to the calculation of the
RRP slope for the actual data, with a single change: The
calculations are performed on the permuted, not the actual,
data. We have thus generated a single RRP slope value for our
control distribution (for a single participant). By repeating this
process 10,000 times, we generated 10,000 RRP slope values
that constituted the null (control) distribution of RRP slopes
for a single participant.

The extremity of the RRP slope per participant—con-
trolling for the prevalence of the final list item—is given
by the z score of the empirical slope relative to the
control distribution. That is, the difference between the
empirical slope and the mean of the control slopes is
divided by the standard deviation of the control slopes.
Thus, an increasing tendency for the final list item to
manifest in later output positions is revealed by a positive
z score, with the magnitude of the z score corresponding
to the extremity of this tendency. The same is true for a
decreasing tendency with a negative z score (see Howard,
Youker, & Venkatadaas, 2008, for a similar approach
when controlling for nonassociative tendencies that
could contribute to output order). Figure 2 presents
pseudocode for calculating the random-order control in
the RRP analysis and for obtaining the z score for the
individual participants. In the supplementary materials,
we provide MATLAB code executing this calculation
for the actual recall data of a single participant (number
28) from the Howard et al. (2007) data (depicted in the
top panel of Fig. 3).
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Fig. 2 Pseudocode for
calculating the z score of an
individual participant 1)

Conduct the following for each individual participant:

Prepare a list of all of the recall trials for the participant. Denote the trials by

trialy trialy, ....trialy. where N is the total number of trials for the participant.

2) Foreachi=12,..,N:

a) Calculate the number of output positions op; in trial i.

b) Find the output position e; of the first error in trial i (the first repeated recall or recall of any

word that didn't appear in the study list): If there is no error on trial i, set ; = o

c) Calculate the chopping output position ¢; = min(op;, e;,4).

d) Chop trial i after output position c;. Denote the chopped trial by ch_trial; . c¢; is now called
the length of the (chopped) trial.

Comment: Following Step 2, we now have a list of error - free recall trials, each of length ¢; < 4.

3) Denote Cpqx = MaXq<i<y C; the 'maximal trial length'.
4) Calculate the RRP slope, rrp_slope, for the list of chopped trials by executing steps a and b

below:

a) Foreachj =12, ...Cpax:

i) Calculate actual; as the number of trials in which the final list item is recalled in

output position j.

ii) Calculate available; as the number of trials with length at least j and in which

the final list item is available in output position j (i.e. not recalled at prior

output positions 1,2,...,j-1).

iiil) If available; > 0. then calculate the jt recency recall probability RRP; =

actual;
available;’

b) Let ! be the maximal output position j for which RRP; was calculated.

If l = 1. then the rrp slope is undefined for this participant.
Otherwise, if [ > 1, regress linearly (with an intercept) RRP;, ..., RRP; on output
positions 1, .... l. The slope of this linear regression is the RRP slope, rrp_slope.
5) Form=1,2,... M (weused M = 10,000):
a) Foreachi =1,2,...,N: Permute randomly the output positions of the elements in the

chopped trial ch_trial;: Denote the permuted trial by trial]™*. Choose the permuted
permutations independently across i (trial number) and m (iteration number).

b) Calculate the simulated RRP slope, rrp_slope,, for the set of permuted trials triall",
triallt, ..., triall} by following Step 4 for the set of permuted trials instead of the actual

chopped trials.

6) Calculate the mean Mean and the standard deviation SD of the sequence of the simulated RRP
slopes: (rrp_slopey, rrp_slope, ,..., rrp_slopey).

7) Calculate the z score: z =

Figure 3 illustrates the null RRP distributions of two par-
ticipants from the Howard et al. (2007) study. The figure
shows that the null RRP distribution for the participant in
the top panel is located to the right of distribution for the
participant in the bottom panel. This is caused by the fact that
the nominal recency of the final list item for the “top partic-
ipant” is higher. This participant recalled the final list item in
88 % of the trials, whereas the “bottom participant” recalled
the final list item on a lower 42 % of the trials. This reinforces
the fact that higher nominal levels of recency bias the RRP
slopes to a larger extent. Next, the vertical lines correspond to
the empirical RRP slopes. Both participants had positive
empirical slopes: 0.3 and 0.02 for the participants in the top
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rrp_slope—Mean

SD

and bottom panels, respectively. Thus, one might have
(erroneously) inferred that both participants exhibited an in-
creasing tendency to recall the final list item as output
unfolded. Critically, however, whereas the empirical slope
of the “top subject” is located in the “right tail” of the null
distribution—corresponding to an increased tendency to
recall the final list item as output unfolds—the empirical
slope for the “bottom” subject leans toward the left side of
the null distribution—implying a decreased tendency.
These different tendencies manifest in a positive z score
(1.68), as compared to a negative z score (—0.42), for
these two participants. In sum, the “signature” of a posi-
tive (uncontrolled) RRP slope can underlie both an
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Fig. 3 Two examples of null RRP-density distributions and empirical
RRP slopes (vertical lines) for two participants from the Howard et al.
(2007) data set (Participants 28 and 208). The density functions were
estimated with kernel estimation techniques (using the function
“ksdensity” in MATLAB)

increasing and a decreasing tendency to recall the final list
item later in output. Fortunately, the random-order control
provides a diagnostic tool for deciphering the true direc-
tion of this tendency (see note 9 below).

Prior to analyzing the empirical data, it is important to
verify that our control analysis is valid. That is, we must
establish that if the output order is indeed random (hence,
reflecting no tendency to recall the final list item different-
ly across output positions), it would produce zero-mean z
scores. To this end, for each value of k =0, 1, 2, ..., 20,
we simulated 10,000 participants, each participating in 20
FR trials (typical of FR studies) and recalling four outputs
per trials (if the output were longer, it would in any case be
truncated). The only constraint on output was that the final
list item was recalled in exactly & of the 20 trials (for each
k, we performed a separate simulation), and subject to this
constraint, the order of the output was set to be entirely
random. Thereby, we treated this simulated data as if they
were “actual” data generated by participants with a con-
stant nominal recency and random output order. Finally,
we calculated for each simulated participant both an RRP
slope and a control z score.

Figure 4 depicts the mean uncontrolled RRP scores across
participants for each value of k. The results demonstrate our
thesis that the RRP slope is strongly biased by the nominal
recency for the final list item. As can be seen, although the
output order is random, the mean RRP slopes monotonically
increase with nominal recency and yield a value as high as .24
when the final list item is recalled on all trials. Because output
order is totally random, these positive RRP slopes can be fully
attributed to the bias that the nominal level of recency imposes

on the uncontrolled measure of conditional recency (RRP
slopes).

Critically, when we averaged the z scores across partic-
ipants for these simulated data, we obtained a mean value
of 0 for all values of £ (the absolute mean z was smaller
than 1 x 10" in all cases). This demonstrates that the z-
score measure is effective in eliminating the bias on con-
ditional recency that is caused by the nominal level of
recency for the final list item.

An additional simulation was designed to verify that
recall patterns can yield both diagnostically positive and
negative control z scores. To this end, we simulated
100,000 participants, each participating in 20 recall trials
and recalling four items per trial. Each participant recalled
the final list item in exactly & trials [drawn uniformly from
the set (1, 2, ..., 20)]. In this simulation, each time that the
final list item was recalled, it appeared in the final (fourth)
output position. Such a recall pattern conveys a strong
tendency for the final list item to be recalled later, rather
than sooner, in the output—that is, an increased tendency
to be recalled as the output unfolds.

Next, for each participant we calculated both an RRP slope
and a z score. The mean RRP score across all participants was
strongly positive: .158. Critically, the mean z score across all
participants was also highly positive—2.74—demonstrating
an increasing tendency even after our random-order control.
Finally, we repeated the simulation with a single change. Now,
each time that the final list item was recalled, it appeared in the
first (rather than the last) output position, reflecting a decreas-
ing tendency to recall the final list item. Indeed, the mean RRP

mean uncontrolled RRP slope
0.25 T T T T T T T T T

0.2}F s

0151 .
7

0.05F /4/ B

J’,/' .+r

et

Ot == +~—1 1 ! | | ! !
0 2 4 5 8 10 12 14 16 18 20
Number of trials in which the final list item is recalled

Fig. 4 Mean uncontrolled RRP slopes as a function of the number of
trials (out of 20) in which the final list item was recalled in the first four
output positions. Note that the output order was totally random. There-
fore, these RRP slopes are entirely mediated by the bias that the nominal
level of recency for the final list item imposes on the RRP slope (i.e., on
conditional recency)
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slope was now negative, at — 158. Critically, the mean z score
remained highly negative, at —4.58. In conclusion, our control
does not obscure recall tendencies to the extent of eliminating
the possibility of finding inherently increasing or decreasing
recall tendencies.®

As we explicated above, our random-order control controls
for all structural components of the recall sequence, save
output order. In particular, it controls not only for the preva-
lence of the final list item, but also for the effect of the
diminishing pool of items, which was of focal concern in
Farrell’s (2010) control analysis. Indeed, when computing
the RRP slope, the size of the available pool of items dimin-
ishes (as output unfolds) for both the empirical and the per-
muted data sets. Next, we will reanalyze the 14 conditions
analyzed by Farrell (2010). Beyond the mathematical bias
modulated by different levels of recency for the last item,
might a dissociation still emerge?

Results

Figure 5 shows the mean RRP-slope z scores across partici-
pants for each condition. Conditions are grouped according to
task: immediate or delayed FR. For immediate FR, only the
“20-2” condition of Murdock (1962) yielded a significant
positive mean z score.” Moreover, the “HVNK” condition
(Howard et al., 2007; also immediate FR) yielded a signifi-
cantly negative z score, thus testifying against an overall
general positive conditional recency in immediate FR, once
recall frequency of the final list item is controlled for. For the
delayed-FR conditions, all of the “ISI” (Howard & Kahana,
1999, Exp. 2) conditions were significantly negative.

Next, we conducted a multilevel linear regression analysis
with z scores for the individual participants as the dependent
variable, task (immediate or delayed FR) as a predictor, and a
random effect on the intercept for the 14 experimental condi-
tions. The effect of immediate versus delayed recall was
positive, 5 = 0.86. Critically, unlike Farrell’s (2010) analysis,
this effect did not achieve significance, #(16.20)=1.08, p = .3.

® In these last two simulations (i.e., when the final list item was recalled, it
was always recalled in the last output position or in the first output
position), we had to adjust the values of k. In both simulations, we did
not use the value & = 0. This was because when the final list item is never
recalled, the z score is not defined. [For any permutation of the trials, cach
recency recall probability RRP(j) = 0. Thus, the RRP slope is always 0,
and the standard deviation of the null RRP distribution is also 0, leaving
the z score undefined.] In addition, in the simulation in which the final list
item was always recalled in Output Position 1, we dropped the value of
20, because for this value the final list item was never available following
Output Position 1, and therefore the RRP slope also could not be calcu-
lated (see Step 4b in the pseudocode in Fig. 2).

7 When a Bonferroni correction for multiple comparisons was applied,
this effect no longer achieved significance.
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Furthermore, a paired-sample ¢ test on the Howard and
Kahana (1999, Exp. 1) data —the only experiment
implementing a repeated measures design comparing imme-
diate and delayed free recall—revealed that the mean RRP-
slope z scores did not differ significantly between immediate
and delayed FR (mean difference =-0.71; ¢1(52) =-1.37,p =
.18, Cohen’s d =—0.19; note that the mean was higher for the
delayed condition). In conclusion, no evidence for a dissoci-
ation between immediate and delayed FR, with respect to
conditional recency, was found.®

Discussion

Unlike delayed FR, in immediate FR, the probability of
recalling the final list item, conditional on its availability,
increases as a function of output position (Farrell, 2010). Here,
we controlled for the recall frequency of the final list item by
reshuffling output order. We found that the dissociation be-
tween immediate and delayed FR tasks no longer emerged.
Admittedly, our results with respect to the comparison be-
tween immediate and delayed FR constitute statistical null
effects. Still, these null effects weaken Farrell’s conclusions
based on the same data set.

Unitary and dual-store theories of memory and model fits

The conditional-recency analysis is highly consequential with
respect to the prolonged debate on unitary versus dual-store
models of human memory (e.g., Davelaar et al., 2005; Kahana
et al., 2008; Lehman & Malmberg, 2013; Sederberg et al.,
2008; Usher et al., 2008). Dual-store theories posit that in
addition to a long-term store, a short-term buffer, which sus-
tains the (otherwise decaying) activation of the recently en-
countered items, is operative in immediate FR. Farrell (2010)
demonstrated that the increasing conditional recency in im-
mediate FR challenges unitary models of episodic memory

& For some of the participants, the null RRP distributions were moderate-
ly skewed (see Fig. 3). To exclude the possibility that this biased our
conclusions, we repeated all of our analyses, but instead of using the z
score, the dependent measure was obtained by only subtracting the mean
of the null RRP distribution from the empirical RRP slope (but not
dividing by its standard deviation). Hence, in Step 7 of the pseudocode,
we calculated only the numerator, and not the denominator. When using
this measure, all of our results were similar, with no change whatsoever to
the conclusion. For instance, in the multilevel linear regression analysis,
the effect of immediate versus delayed recall was positive (3 = 0.04) but
not significant, £(18.95) = 1.40, n.s. Additionally, the paired-sample ¢ test
comparing the immediate-FR and delayed-FR conditions of Experiment
1 of Howard and Kahana (1999) revealed no significant difference
[difference = —0.01; #(55) = —0.17, n.s.]. Finally, note that in our first
simulation with a random output order, the mean of the z scores was 0 for
all levels of recency, implying that the z-score measure did not introduce a
systematic bias into our analysis.
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Fig. 5 Mean RRP-slope z scores
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such as the TCM and SIMPLE, in that computational fits of
these models to empirical data predict negative conditional-
recency slopes. This occurs because in these models, the
passage of time during the recall phase diminishes either the
overlap between the encoding context and the evolving test
context of the final list item (relative to prior items; TCM) or
the enhanced discriminability of the encoding context
(SIMPLE) (see note 2). In addition, Farrell demonstrated that
computational fits of the model to the empirical data were
improved when assorted mechanisms of STM were incorpo-
rated into the models.

The inability of the TCM to account satisfactorily for the
conditional-recency dissociation (and the better accounts pro-
vided by an STM mechanism) has been argued to indicate that
dual-store models are superior to unitary models (Usher et al.,
2008; see note 1). Nevertheless, our findings suggest that the
conditional-recency dissociation is too compromised to serve
as a deciding factor when assessing unitary against dual-store
models of memory.

Implications with respect to additional analyses described
by Farrell (2010)

Farrell (2010) conducted several analyses that went beyond
conditional-recency slopes. In these, he showed that rather
than only looking at the slope of the RRP function, it is
useful to look at the shape of the function (the “RRP
profile”). He argued that different experimental conditions
create meaningfully different profiles. Specifically, in
some immediate-FR conditions, RRP curves initially in-
crease and later decrease, whereas in other conditions the

15-2 2041
Immediate

20-2 301 401 HVNK H&K-1 [SI=0 ISI=25 [SI=8 ISI=16
Delayed

opposite occurs, with an early decrease (or flatness)
followed by an increase (see Farrell, 2010, Fig. 2). Addi-
tionally, Farrell demonstrated how these RRP profiles
could be used to challenge FR models for adequate fit,
and thus could serve the purpose of model diagnosis.

Farrell (2010) used the RRP functions to compare alterna-
tive candidate mechanisms for recall buffers, if such recall
buffers are indeed involved in FR tasks (Sederberg et al.,
2008; Usher et al., 2008). Importantly, by utilizing a model
comparison approach, Farrell demonstrated that models that
incorporated certain STM mechanisms (e.g., a “forward buff-
er”’) outperformed purely unitary models in most of the
immediate-FR conditions (and were outperformed by TCM
in most of the delayed-FR conditions). With respect to these
additional sets of analysis, we wish to make the following
comments.

First, the functional findings (the RRP profiles) did not
yield an empirical dissociation between immediate and
delayed FR. Moreover, these findings exhibited substan-
tial differences within a task (e.g., immediate FR). We
thus find the conditional-slope dissociation to be the most
dramatic and coherent empirical finding of Farrell’s
(2010) analysis, the interpretation of which has now been
put in question.

Second, as we have explicitly argued in this article, the
random-order control method is not limited to RRP slopes.
Rather, it can be applied to any analysis that makes claims
regarding the theoretical tendencies that manifest across
output positions. Because RRP functions are a case in
point, future RRP function analyses might benefit from
such a control.
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We now consider the model comparison approach that
Farrell (2010) conducted to compare unitary and dual-store
models. We find this approach perfectly valid and convinc-
ing.” Importantly, such model comparisons are based on the
entire recall sequences and are not limited to conditional-
recency patterns (slopes or functions). They thus provide
general findings that are of intrinsic value, beyond any aspects
of conditional recency. In this respect, Farrell’s finding that
incorporating STM buffers into unitary models such as TCM
enhances their ability to account for recall data is highly
important and indicative for the unitary- versus dual-store
debate.

Still, although it is indicative, we encourage a cautious and
preliminary interpretation of these findings. Farrell’s analysis
is restricted to the “standard TCM” model. A more sophisti-
cated and flexible version of TCM, albeit one that is more
complex with respect to parameter economics—the TCM-
A—has been presented (Sederberg et al., 2008). It is still
unknown how this new model will fares with respect to
conditional-recency data. Also, as was noted by Farrell
(2010), the unitary models with a buffer supplement that he
evaluated “do not constitute full models of free recall” (p.
342). So, conclusions with respect to these model compari-
sons cannot yet be definitively made.

A confound or a useful redescription?

In this article, we showed that the RRP slope is highly
modulated by the prevalence of the final list item. Yet,
some scholars may note that it is often the case that co-
varying measures are successfully and simultaneously used
in the study of a given phenomenon (e.g., in FR, both serial
position and the probability of first recall are often used).
Thus, it may be argued that the (uncontrolled) RRP slope
provides useful descriptions of empirical data, while ac-
knowledging that part of this description overlaps with
nominal recency.

Here, however, we have made the case that the tendency
to recall the final list item across output positions is biased,
and hence should better be isolated from the prevalence of
the final list item. Importantly, our work should be of
theoretical interest even for those who interpret what we
find to be a measurement bias as a valid part of their
construct. Indeed, a comparison between Farrell’s (2010)
original analysis and our reanalysis of the same data sets
implicates the extent to which the conditional-recency

? Such an approach was implemented by Farrell (2010) by maximum
likelihood estimation of free parameters for the alternative models,
followed by calculation of a “model-complexity compensating” criterion,
such as the Bayesian information criterion, and selecting the model that
achieved the minimum criterion among the model candidates.

@ Springer

dissociation is affected by the nominal recency of the final
list item. As such, this comparison should be useful for
students of conditional recency in furthering the understand-
ing of its underlying mechanisms.
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