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Historically, visual search models were mainly
evaluated based on their account of mean reaction
times (RTs) and accuracy data. More recently, Wolfe,
Palmer, and Horowitz (2010) have demonstrated that
the shape of the entire RT distributions imposes
important constraints on visual search theories and can
falsify even successful models such as guided search,
raising a challenge to computational theories of search.
Competitive guided search is a novel model that meets
this important challenge. The model is an adaptation of
guided search, featuring a series of item selection and
identification iterations with guidance towards targets.
The main novelty of the model is its termination rule: A
quit unit, which aborts the search upon selection,
competes with items for selection and is inhibited by
the saliency map of the visual display. As the trial
proceeds, the quit unit both increases in strength and
suffers less saliency-based inhibition and hence the
conditional probability of quitting the trial accelerates.
The model is fitted to data the data from three classical
search task that have been traditionally considered to
be governed by qualitatively different mechanisms,
including a spatial configuration, a conjunction, and a
feature search (Wolfe et al., 2010). The model is
mathematically tractable and it accounts for the
properties of RT distributions and for error rates in all
three search tasks, providing a unifying theoretical
framework for visual search.

Introduction

Visual search is an experimental paradigm that has
attracted intensive research over the last 50 years in the
vision-research literature for three important reasons.
First, it is commonly used in daily activity and is
essential to our survival, as when we search for a target
(say, our child) among similar distractors (children of
other parents). Second, it has been at the forefront of
the research on attentional processing, with a number
of alternative theories suggesting that, depending on
the search material, observers either spread their
attention over the whole display (Shaw, 1982; Palmer,
Verghese, & Pavel, 2000) or sequentially deploy it from
one item to another (Treisman & Gelade, 1980; Wolfe,
Cave, & Franzel, 1989). Third, it is a complex task,
involving both perceptual and decision processes
(Palmer & McLean, 1995; Zehetleitner & Müller, 2010;
Zehetleitner, Rangelov, & Müller, 2012), which has
generated a number of alternative ways to account for
the data by shifting the explanatory locus from
attentional to decision processes.

The typical finding that has driven research in visual
search is the set-size effect: the finding that, depending
on the type of search stimuli, the mean reaction time
(RT) for target detection increases (or does not
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increase) with the number of items in the display (set
size). Typical data shows that, in easy search tasks
(feature search, e.g., finding a red among green circles;
e.g., Egeth, Jonides, & Wall, 1972), the mean RT is flat
with set size, in contrast to difficult search tasks in
which the slope of the RT/set-size function (i.e., the
mean RT increment when the set size is increased by
one item) is considerably higher (e.g., finding a 2
among 5s or a red vertical line among red horizontal
and green vertical lines; e.g., Atkinson, Holmgren, &
Juola, 1969). In such difficult tasks, the time to find a
target in the displays increases approximately linearly
with the number of distractors. This effect of set size,
together with the finding that the search slope is about
twice as high when the target is absent as compared to
present, has motivated a number of theories about the
deployment of attention in search. For example, it was
concluded that, while in simple feature search one can
use bottom-up feature contrast signals to directly
allocate attention to the target position, in more
complex search tasks one typically has to shift attention
serially between the items in order to locate the target
(e.g., Treisman & Gelade, 1980; Wolfe et al., 1989; Itti
& Koch, 2000, 2001). For several years, search tasks
with flat set-size functions have been referred to as
parallel and those with steeper functions as serial
searches.

Early on, however, it has been noted that mean RT
data provide only weak constraints for search models.
Empirical mean-RT patterns are not a signature of a
parallel versus serial processing architecture. Rather,
parallel and serial models could mimic each other; in
particular, both serial and parallel models can generate
either positive or flat slopes (Townsend & Ashby, 1984;
Townsend & Nozawa, 1995). As a consequence, Wolfe
(1998) has proposed to use the continuum between
efficient and inefficient to characterize search tasks,
rather than terms that postulate an underlying cogni-
tive architecture, such as parallel/serial search.

A potential remedy for the problem of model
mimicry is to consider entire RT distributions: Whereas
mean RT is merely a central tendency summary of
many observations, the shape of the whole RT
distribution contains much more information about the
underlying decision processes (Ratcliff, 1978). Thus,
challenging models with the necessity to account for
entire distributions may permit alternative models to be
distinguished which are indistinguishable on the basis
of mean RTs alone (Cousineau & Shiffrin, 2004; Wolfe,
Palmer, & Horowitz, 2010; Balota & Yap, 2011).

Recently, Wolfe et al. (2010) have published an
extensive data set which includes data from three of the
standard tasks in the visual-search literature. For these
three basic search tasks, the authors have collected a
solid basis of more than 100,000 trials. The tasks are a
color feature, a conjunction, and a spatial configuration

search. In the color feature task, the nontargets were
green vertically oriented bars and the target, when
present, was a red vertical bar. In the conjunction task,
the nontargets were green vertical and red horizontal
bars, the target a red vertical bar. In the spatial
configuration task, the target had the shape of the digit
2 presented amongst digit 5 nontargets. These tasks are
considered to be paradigmatic: search slopes are either
flat (1 ms/item), intermediate (9 ms/item), or steep (43
ms/item) for feature, conjunction, and spatial-configu-
ration search, respectively. For each participant and
condition (target present/absent, set size, task), some
500 observations had been collected. This large number
of observations permits for a rather precise estimate of
the RT distributions, as the variance of the estimate of
a population’s quantile RT obtained from the quantile
of a sample of RT observations is inversely propor-
tional to the sample size (Kendall & Stuart, 1977, cf.
Ratcliff & Tuerlinckx, 2002). By virtue of the large
number of observations and the selection of prototyp-
ical search tasks, these RT distributions provide an
important benchmark for models of visual search.
Currently, there is as yet no model of visual search
which meets this benchmark. One of the most popular
models of visual search—guided search—appears to
fail this benchmark in its published versions (Wolfe et
al., 2010, p. 1309; see discussion below).

The aim of our paper is to develop a computational
model of visual search that can account not only for
mean RTs but also for RT distributions and error rates.
As our model is based on the guided-search framework,
we start with reviewing guided search and the problem
it encounters in accounting for distributional RT data.
We will then elaborate on one key mechanism to any
visual search process—search termination—which we
will argue to be critical for yielding a good account of
distributional RT data. In what follows, we present our
model and the data fits that it achieves to the
benchmark data of Wolfe et al. (2010). We end with a
discussion of the main properties that enable the model
to achieve a good account of the data and with a
discussion of the wider implications for other types of
visual search models and to search optimality.

Guided search

Guided search (Wolfe et al., 1989; Wolfe, 1994, 2007)
is one of the most popular/prominent models of visual
search. It assumes a two-stage processing architecture,
where in a first stage the display is processed in parallel
(see also Hoffman, 1979). This parallel processing stage
results in a salience value for each location in the
display. Salience here is understood as a measure of
local conspicuity: how distinct a visual item is,
compared to all other items, with respect to color,
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orientation, luminance, and motion (Koch & Ullman,
1985; Itti & Koch, 2000; Bruce & Tsotsos, 2009). The
second processing stage consists of serial selection of
items in descending order according to their salience. In
each attentional selection, one item is scrutinized for its
target identity; that is, each selection leads to a target
versus nontarget decision for the selected item. Search
is assumed to terminate with a positive response when
the first item is classified as a target (i.e., self-
terminating search). This model was highly successful
in explaining a number of search RT patterns, such as
the continuous distribution of search slopes (Wolfe,
1998), the interplay between top-down and bottom-up
factors in the guidance of attention, and the high
efficiency of some conjunction searches (Wolfe et al.,
1989). Guided search can account for high efficiency
conjunction search by allowing the first parallel stage to
depend not only on bottom-up stimulus features, but
also on top-down modulations of the salience map,
which influence the order in which items are searched.
For instance, in a conjunction search, when the target is
a red vertical item, guided search assumes the feature
contrasts of ‘‘red’’ and ‘‘vertical’’ to have a greater
impact on the salience map than feature contrast
generated by other features.

Search termination

A critical component of any search model, including
guided search, is the search termination mechanism.
When a target is identified, this mechanism is assumed
to terminate the search generating a ‘‘target-present’’
response. However, the literature is less consistent with
respect to search termination when no target is
identified. The first possibility is that of an exhaustive
search: search terminates, generating a ‘‘target-absent’’
response, only when all items in the display have been
rejected (i.e., classified as a nontarget). Note that this
search termination rule can be applied not only to two-
stage models (such as guided search), but also to
parallel models (Ward & McClelland, 1989; Palmer &
McLean, 1995) in which all items are processed
simultaneously though with varying classification
durations. A number of more complex termination
rules have also been suggested.

Wolfe et al. (2010) discuss a schematic (simplified)
implementation of guided search which is self-termi-
nating when a target is found and exhaustive when no
target is present. Specifically, search is terminated when
the target has been identified, or when all items in the
display have been checked and rejected. The model was
aimed at simulating the hardest task (2 amongst 5s) for
which it is assumed that the target provides no bottom-
up guidance, that is, items are selected for identification
in an equiprobable random order (e.g., Treisman &

Gelade, 1980; Wolfe, 1994). In their implementation,
attention was deployed to an item on average every 98
ms (the deployment times being drawn from a gamma
distribution). For target-absent trials (exhaustive
search), the number of items inspected prior to
response execution was the set size. For target-present
trials, the number was drawn uniformly from the
integers between one and the set-size (serial self-
terminating search, with no saliency-based guidance for
the target). The simulated RT was the sum of the times
for each deployment plus a motor/nondecision com-
ponent that was also gamma distributed (200 ms on
average). Although the simulation parameters were
chosen in such a way that the model produced mean
RTs that were similar to the empirical data, Wolfe et al.
(2010) pointed out several important discrepancies
between the RT distributions of the simulated and of
the empirical data.

As can be seen in Figure 1, the simulated target-
absent and target-present RT distributions for Set Size
18 exhibit only a small overlap, as opposed to the
substantial overlap of the respective empirical distri-
butions (note, in particular, the leading edge); a similar
discrepancy appeared for Set Sizes 12 and 6. Further-
more, the simulated target-present RT distributions
change their shape from peaked to rectangular as set
size increases, whereas the target-absent RT distribu-
tion has a much more narrow distribution, unlike that
observed in the data. Given this failure of a plausible
implementation of guided search to fit the benchmark
data, Wolfe et al. (2010, p. 1310) concluded that this
model faces a serious challenge in accounting for RT
distributions.

Wolfe et al. (2010) point out that the distributional
data is also problematic for some other search
termination rules. One such rule is to terminate search
after a temporal interval has elapsed that would allow
successful target detection on P% (e.g., 95%) of the
trials. The idea, instantiated in some version of the
guided search model, is that target-present responses
are determined by a stochastic timer (a stochastic quit
accumulator racing to threshold) that is independent of
the identification process. However, as Wolfe et al.
(2010) argued, such a mechanism mandates a high miss
rate if the RT distributions for target-present and
target-absent trials overlap substantially. To see this,
consider a target-present trial with a ‘‘lingering’’ target-
present response, that is, an RT that is longer than the
median RT for target-absent responses. Arguably, this
response ended up as a hit owing to the target-absent
timer ticking slower than its median speed. However,
since the quit timer operates independently of the
identification process, there was an equal chance that
the timer would have expired sooner than its median
response time, in which case the target would have been
missed. Thus, on average, any lingering hit trial should
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be matched with a miss trial. This results in a lower
bound on miss rates based on the overlap between the
target-present and target-absent RT distributions (see
Wolfe et al., 2010, Figures 4 and 5). Wolfe et al. (2010)
thus concluded that the empirical combination of low
miss rates with large distributional overlap renders such
a termination mechanism implausible as an account of
their data.

Alternative termination rules

An alternative to the timer-based termination
scheme is to quit after a certain proportion of items has
been examined. This has been implemented in guided
search-like two-stage architectures in several ways.
First, terminating after checking only a proportion of
the items has been implemented via a cutoff in salience
(Chun & Wolfe, 1996). Second, the conditional
probabilities of terminating search after checking k out
of n (�k) items have been proposed to be free model
parameters (e.g., Cousineau & Shiffrin, 2004). And
third, termination could be implemented as an item-

based (rather than time-based) termination criterion
(Wolfe, 2007; Wolfe & Van Wert, 2010). We briefly
describe these termination rules below.

In the model of Chun and Wolfe (1996), in rejecting
some items as nontargets based on their below-cutoff
salience levels without identifying them, a single free
parameter controls the average proportion p (,1) of
items that are eligible for examination and this
proportion is set-size-invariant: The number of eligible
items is also the number of items that will be checked
unless a target is identified first, whether correctly or
mistakenly. For example, for a given cut-off parameter
which results in rejecting 25% of the items, on average
six items are eligible for Set Size 8, and 12 items for Set
Size 16. In the Cousineau and Shiffrin (2004) model,
the termination probabilities after each nontarget
identification are free parameters (estimated from the
model), and each additional empirical set size n requires
n�1 new free parameters. A more parsimonious
termination rule was suggested by Donkin and Shiffrin
(2011). According to this rule, the termination proba-
bility is a logistic function of the proportion of already
inspected items, which is characterized by only two free

Figure 1. Data reproduced from Wolfe et al. (2010). Target-present and absent RTs of the spatial configuration task for Set Size 18.

Black lines correspond to target-present trials and blue lines to target-absent trials. Solid lines refer to empirical data of one

prototypical subject. Dashed lines refer to the simplified serial search model with exhaustive termination on nontarget trials

(reproduced with the parameter values given in Wolfe et al., 2010).
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parameters (location and scale). In the Wolfe and Van
Wert (2010) model, item-based termination occurs
when a stochastic accumulator that is incremented
following each nontarget rejection reaches a boundary
(Wolfe & Van Wert, 2010). This strategy also requires a
specific strategic criterion for each set size (Wolfe,
2007). None of these three termination rules have as yet
been tested on the Wolfe et al. (2010) RT distribution
benchmark data.

The most important alternative to guided search is
the family of single-stage parallel models. Such models
account for set-size effects either on the basis of
capacity limitations on the processing rates (Bundesen,
1990) or by adjusting the response criteria (Palmer &
McLean, 1995). Several single-stage parallel models
have been devised to specifically account for accuracy
(though not RT) data (e.g., Eckstein, 1998; Palmer et
al., 2000), while others have accounted for mean-RT
data (Ward & McClelland, 1989; Palmer & McLean,
1995; Thornton & Gilden, 2007). The probabilistic
parallel search model (PPSM; Dosher, Han, & Lu,
2004, 2010) has been successful in accounting for the
temporal course of visual search in speed-accuracy
trade-off paradigms (in which accuracy is measured as
a function of the manipulated processing time) under
conditions of brief display presentation. To the best of
our knowledge, none of these models (like the serial
ones discussed above) have as yet attempted to fit the
benchmark of RT distributions for the most basic
search tasks (Wolfe et al., 2010).

Typically, parallel models for RT (Ward & McClel-
land, 1989; Palmer & McLean, 1995; Thornton &
Gilden, 2007) assume that for each item in the display,
there is a parallel diffuser whose boundary crossing
determines whether the corresponding item is a target
or a nontarget. That is, one boundary of each diffusor
corresponds to target identification and the other
boundary to nontarget identification of that item. A
‘‘target-present’’ response is triggered as soon as any of
the diffusers hits the target boundary, and a ‘‘target-
absent’’ response as soon as all diffusers hit the
nontarget-absorbing boundary. In that sense, search is
self-terminating when a target is found and exhaustive
until all items are verified as being nontargets. The
diffusion process is assumed to be noisy and conse-
quently a nontarget diffuser could reach the target
boundary, thus generating a false alarm (on a target-
absent trial). A miss occurs when a target is present but
all diffusers (including the target diffuser) reach the
nontarget boundary.

Consider the behavioral consequences of maintain-
ing the decision boundaries at a fixed level across
different set sizes in such a parallel model: As set size
increases, so does the probability that one of the
nontarget diffusers will accidentally reach the target
boundary. This will increase both false-alarm and hit

rates. Most typically, however, empirical miss rates
increase, rather than decrease, with increasing set size,
whereas false-alarm rates stay rather constant (e.g.,
Chun & Wolfe, 1996). Thus, response boundaries must
be adjusted for different set sizes if a parallel model is
to capture these qualitative error data patterns. At the
same time, such adjustments change item identification
durations, accounting for RT set-size effects. The
upshot of this discussion is that parallel models require
strategic set-size-dependent parameters in order to
account for search RT data.

The present model: Competitive
guided search

We describe our model in three levels of technical
detail. First, we provide a general description which is
aimed at any reader regardless of their interest in
technical details. The second description is more
elaborate, presenting the model implementation in full
detail. Finally, we provide, in Appendix A, a
comprehensive (mathematically) analytic derivation of
the behavioral predictions (accuracy rates and RT
distributions) of the model. The model’s amenability to
mathematical explication equips it with substantial
theoretical and computational advantages, which will
be discussed.

General description

We now present an implementation of a two-stage
search model with a novel termination rule, which can
account for the RT distribution benchmarks of Wolfe
et al. (2010). The basic model is an adaptation of
guided search in its iterative implementation of two
stages: selection and identification. The main novelty of
our approach lies in the termination rule, which
combines two main principles: first, we assume that the
search termination mechanism increases the condi-
tional probability of quitting after the inspection of
each additional item (e.g., Cousineau & Shiffrin, 2004;
Wolfe & Van Wert, 2010); second, we assume the
operation of inhibitory connections from the salience
map to a termination unit (Zehetleitner, Müller, &
Wolfe, 2009).

Let us first consider the flow of processing and
decisions in our model. Each iteration begins with a
decision whether to terminate search: quit selection. If
search is terminated, a ‘‘target-absent’’ response is
issued. If search is not terminated, a selection decision
is made, resulting in attentional selection of another
item from the visual display. Next, the selected item is
identified either as the target—resulting in a ‘‘target-
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present’’ response—or as a nontarget. Following the
identification of a nontarget, the nontarget is inhibited
and an adjustment is made to the likelihood of
terminating the search (see detailed description below),
and the next iteration begins (see Figure 2). This search
cycle continues with either, eventually, an identification
decision determining that a selected item is a target, or
a decision to terminate the cycle by quit-selection.

Before discussing each of these decisions in detail, we
describe their general properties. First, the selection
decision is guided by salience: the more salient an item
is, the greater the probability that it is selected first. If
the salience difference between targets and nontargets is
large enough, the probability that the target is the first

item to be selected is very close to one for all empirical
set-sizes, resulting in pop out: flat set size RT functions.
If, on the other hand, there is no salience difference
between target and nontargets, search becomes un-
guided and the order of item selection is random. As
such, the model is indifferent as to how item salience is
generated, that is, it allows for both bottom-up and
top-down influences influences on salience. The more
physically distinct the target is from the distractors, but
also the more attentional weight is assigned to the
target feature (Wolfe et al., 1989) or the target
dimension (Found & Müller, 1996), the higher target
salience becomes.

Figure 2. Flow chart depicting the sequence of decisions. When a trial is started, first a quit decision is made. The probability of

quitting is described by the equation for pquit which is equal to the weight associated with the quit unit, relative to the overall weight

associated with the quit unit and with the display items, wi. Because wquit is initialized with zero, this never results in a ‘‘target-absent’’
response at the beginning of a trial. Also, search is definitely terminated if all items in the display have been checked, because, in this

case, the denominator in the equation is equal to wquit, resulting in a quitting probability pquit of one. If search is not terminated, an

item is selected for serial inspection. The probability of selecting the target (if present) is described by Equation 1 (see text below). If

the target is selected, a ‘‘target-present’’ response is issued. If a nontarget has been selected, the weights are adjusted, that is wquit is

increased by Dwquit and the weight of the just inspected item is set to zero, after which the next quitting decision is made. Responses

are subject to a small proportion of motor errors. The icons to the right of the quitting decision and the attentional selection unit

denote the weights for the quitting unit as well as the weights of one target, T, and three distractors, D1 through D3. D2 has already

been identified as a nontarget and its weight reset to zero. Also, the quitting weight has already been increased. The example

illustrates some guidance in the system, as the target weight is slightly larger than the distractor weights. The duration of reaching a

target/no-target decision is drawn from a Wald distribution, corresponding to a noisy accumulation process to a single boundary

(Luce, 1986). Note that motor errors are not depicted in this schematic.
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The termination rule has several general properties.
First, search terminates when all items in the display
have been identified as nontargets, assuming perfect
memory for visited locations (Horowitz, 2006).1 Sec-
ond, our termination decision allows for search to be
terminated even before all items have been identified.
This takes place especially in efficient pop-out searches:
After the first item has been identified as a nontarget, it
would make little sense to verify that all other items are
also nontargets before issuing a ‘‘target-absent’’ re-
sponse. The reason is that in such tasks, the probability
that the first item selected is the target is close to one
when a target is present. Consequently, if the first
selected item turns out to be a nontarget, it is highly
unlikely that a target is present at other locations.
Thus, it is relatively safe to quit the search while
maintaining a low miss rate.

This nonexhaustive search termination is important
for generating a nearly complete overlap of RT
distributions for ‘‘target-present’’ and ‘‘target-absent’’
responses as well as a flat search slope for mean
‘‘absent’’ RTs, as is typical for efficient searches (see,

e.g., Wolfe et al., 2010, Figure 4, or our Figure 1).
Thus, our termination decision allows for both
exhaustive and nonexhaustive types of search. Fur-
thermore, in the current termination mechanism, the
conditional probability of search termination (prior to
target identification) increases following the identifica-
tion of each nontarget. Regulating the size of this item-
to-item increase in termination probability between
tasks determines how early the search will terminate: A
very large increase results in search termination directly
after the first item has been identified as a nontarget
(suitable for pop-out searches, where the target—if
present—is the first item to be inspected). By contrast, a
zero increase results in an exhaustive search, that is,
checking all items for their identity. Intermediate levels
of the probability increment allow for a smooth
interpolation between these two extremes.

Finally, the core novelty of our termination mech-
anism is its link to the salience map. The overall
amount of activity on the salience map regulates (i.e.,
down modulates) the probability of quitting a trial in
the termination decision. This inhibitory link between

Figure 3. RT probability density functions for hits (left panel) and correct rejections (CR) (right panel) as probability mixtures across

the number of item identifications prior to trial termination. The figure shows the constituent defective shifted ex-Wald distributions

(thin lines) that correspond to the RTs in the event that k items are identified on a hit trial or a CR trial. The mixture (thick)

distributions are just the functional (vertical) sum of these defective distributions. The plot is based on the best-fitting parameters of

the average observer on the spatial configuration task for Set Size 6.

Figure 4. Stimuli for the feature, conjunction, and spatial configuration tasks. The target is the red vertical bar (in the left and middle

panels) or, respectively, the digit 2 (in the right panel). Redrawn after Wolfe et al. (2010) with permission.
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the salience map and the termination mechanism has
several desirable properties. For instance, the amount
of activity on the salience map is proportional to set
size: the larger the set size, the more nontargets are
represented on the salience map. Thus, due to the
inhibitory link between the salience map units and the
termination unit, an increase in set size causes later
search terminations. In other words, the larger the
display size, the more items are checked before search is
terminated. Consequently, the empirical finding that
target-absent RTs increase with set size can be
generated by the current model even for nonexhaustive
searches (i.e., not checking all items before quitting).

Selection decision

Although the flow chart describing the decision
process of our model starts with the termination
decision, we commence the detailed description with
the selection decision, because this permits the basic
computational concepts also used in the termination
mechanism to be readily introduced.

In general, the selection stage is conceived as a
competition between the display items. In the model,
each item in the display is represented by a saliency
value. Similar to the guided search model, these
saliency values are assumed to be computed in parallel
for all items in the display with no temporal cost.
Similar to guided search, the saliency values are not
maintained at a fixed level during the trial, but rather
they change as a consequence of distractor identifica-
tion and inhibition (see below) in order to prevent
reselection of a previously rejected item—under the
assumption of perfect memory for visited locations (see
also Itti & Koch, 2001). We denote the saliency (or the
weight) of item i by wi � 0.

The weight of each display item is proportional to its
salience level. Salience here is understood as physical
(bottom-up) feature contrast of each item to its
surround (as quantified for instance by Itti & Koch,
2000, 2001; Gao, Mahadevan, & Vasconcelos, 2008;
Bruce & Tsotsos, 2009; and others). It is well
established that bottom-up stimulus factors are not
solely responsible for attentional selection. Rather,
intentional top-down signals are able to modulate
bottom-up salience, for instance, when an observer is

Figure 5. RT distribution and error data for the spatial configuration search task. The top panel depicts quantile RTs and the lower

panel error rates for Set Sizes 3, 6, 12, and 18 items, for target-present (black color) and target-absent (blue color) trials. Empirical

data from Wolfe et al. (2010) are denoted by symbols x and data predicted by the best-fitting model by symbols þ. The empirical

quantiles and error rates are obtained by averaging empirical quantiles and error rates, respectively, across individual participants.

The model predictions are based on the parameters from the fit of the RT distribution averaged across all observers (the mean

distribution).
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looking for a red item, or for a color pop-out target the
specific color of which is not known in advance. In such
cases, salience signals from red or from color channels,
respectively, are amplified (e.g., Wolfe et al., 1989;
Found & Müller, 1996; Navalpakkam & Itti, 2006;
Zehetleitner, Goschy, & Müller, 2012). The exact
computation of salience values is beyond the scope of
the present model. It is however based on the
assumption that item weights wi are proportional to the
items’ salience.

The selection process itself is probabilistic and based
on Luce’s choice axiom (Luce, 1959). According to
Luce’s choice axiom, each competitor is selected with a
probability that is equal to its relative weight, which is
its weight in relation to the sum of weights for each
competitor. Thus, each item i is selected with proba-
bility

pi ¼
wiX

j

wj

; ð1Þ

where the numerator wi is the weight (salience) of item i
and the denominator consists of the sum of saliencies
for all items in the display. That display item which is
selected is the next one to be (see below).

Note that similar to guided search, target relative to
nontarget salience determines the order in which items
are selected in a probabilistic stochastic way. In guided
search, however, the actual salience value of an item on
a single trial is drawn from a normal distribution
centered on the theoretical average salience of the item.
Zehetleitner, Koch, Goschy, and Müller (2013) have
proposed to pay terminological credit to this distinction
by referring to the numerical value that an item has on
the salience map on a given trial as selection salience
and the expected value of the distribution from which
selection salience values are drawn as stimulus salience.
Stimulus salience thus denotes the physical property of
the display item. All item (selection) saliences are then
rank ordered and items selected and identified in
descending order of their associated salience. In other
words, the actual selection salience value of an item
varies from trial to trial stochastically. In contrast, in
competitive guided search, the salience value in the
selection Equation 1 is assumed to be constant from
trial to trial, thus corresponding to the constancy of the
stimulus salience value in guided search. In the present
model, stochasticity in selection is introduced by Luce’s
choice axiom, rather than a signal-detection type of
mechanism as in guided search. Importantly, in both
the present conception and that of guided search, it is
possible that a nontarget is selected prior to the target,
even though the target has a higher (in guided search:
stimulus) salience value.

In competitive guided search, in each iteration of the
search process, a new competition takes place. Thus,

items are not ranked (according to selection saliency)
once and for all in a manner that determines their
selection order during the entire trial. Rather, each
competition results in a unique winner, and in
subsequent selections, new and independent competi-
tions occur. One way to conceive of the above
competition is by assuming that each item reflects a
neuronal population that fires at a rate that follows a
Poisson process with rate wi. If the selection process
consists of eavesdropping on the first incoming
neuronal pulse, then it follows that each item is selected
according to the probabilities given above (Townsend
& Ashby, 1984). Since only relative weights are
operative in the current model (i.e., selection will
operate in the same manner if all the weights are
multiplied by a constant), we adopt the convention that
for a display with homogeneous nontargets, wnontarget¼
1. Thus, the weight of the distractors serves as a weight-
scaling factor.

Guidance favors selection of targets when the target
has higher saliency than any of the distractors, that is,
when wtarget . 1. If so, then the target has a higher
probability of being selected than any of the distrac-
tors. Note that, in principle, the model is flexible
enough to allow for targets with salience less than
nontargets: If wtarget , 1, than the target is less salient
than the distractors and has a lower chance of being
selected. Another important assumption of the model is
that the initial weights for the nontargets (¼ 1) and the
target (if present) are independent of set size. Note that
despite this assumption of set-size-independent target
weights, the probability of target selection decreases
with set size, because its relative weight decreases
(because set size affects the denominator in calculating
the selection probability in Equation 1). In the current
model, we neglect the duration of the selection process.
In other words, item selection is assumed to occur
instantly and does not contribute to the trial RT.

Search termination

Having prepared the ground, it becomes apparent
how the termination decision is implemented. First,
the model assumes the existence of a quit unit (as for
instance in Wolfe & Van Wert, 2010). This unit is also
characterized by a nonnegative activation weight wquit,
which reflects the dynamic tendency to terminate the
search, rather than to select a new item from the visual
display: The larger wquit, the more likely the search will
be terminated. The core novelty of the present model
is that the quitting unit is linked to activity on the
salience map. That is, the quit unit issues a termina-
tion probability proportional to its own activity, wquit,
relative to the overall activation on the salience map:

Journal of Vision (2013) 13(8):24, 1–31 Moran, Zehetleitner, Müller, & Usher 9



pquit ¼
wquitX

j

wj þ wquit

: ð2Þ

If the quit unit is selected, search on this trial terminates
with a ‘‘target-absent’’ response. What are the conse-
quences of the inhibitory connection from the salience
map to the quit unit? First, for a given quitting weight
wquit, the probability of terminating search following
the kth distracter identification is reduced as set size
increases, because set size increases the summed activity
on the salience map. Second, when all items have been
checked and rejected, activity on the salience map is
zero (see distracter inhibition below) and consequently
pquit ¼ 1 (Equation 2). Third, on target-present trials,
that is, with targets whose salience may even be just a
little larger than that of nontargets, search termination
would tend to occur later than on target-absent trials.
This is because the total weight of the saliency map
would be higher for target-present, compared to target-
absent, displays, as it would include the (if even slightly
increased) weight of a target. Hence, the quitting
probability (Equation 2) would smaller for target-
present than for target-absent trials. Consequently,
information about the likelihood of target presence,
which is latently present within the salience map, is
used to modulate the termination probability.

On trial initiation, the model assumes that wquit¼ 0,
which yields a zero probability of terminating the trial
before any display item is selected. Later on, as
distractors are identified as nontargets, the weight of
the quit unit increases, and so does the likelihood of
search termination (see below for details). If and when
the quit unit is finally selected, a ‘‘target-absent’’
decision is made and the observer proceeds to the
response execution stage. Similarly to the duration of
item selection, we also neglect the duration of the quit
unit selection (though see the Discussion).

Target identification

Once a display item has been selected, it goes
through a process of item identification, that is: Is it a
target or a nontarget? When a selected item is identified
as a target, search is terminated and a target-present
response is produced. The identification time is
modeled by a stochastic accumulation to a boundary
(here, we neglect the probability that a target is
misidentified; but see the Discussion). The temporal
density of item identifications follows a Wald distri-
bution with three parameters: drift rate, threshold, and
noise variance (Luce, 1986):

fidðtjh; m; rÞ ¼

ffiffiffiffiffiffiffiffiffi
h
r

� �2

2pt3

s

*e

� h
rð Þ2 t�h

mð Þ2
2 h

mð Þ2t ; ð3Þ

where h denotes the threshold and m the drift rate of the
identification decision; the noise level r is a scaling
factor and was fixed at 0.1. For the sake of simplicity,
the drift rate, threshold, and noise level parameters for
the Wald distribution were identical for targets and
distractors and were maintained at a fixed level across
set size. In addition, the times required for the
identification of different display items are assumed to
be independent. Note that the mean item identification
time is given by the ratio of the threshold and the drift
rate: h/m.

Despite our assumption of perfect identification, the
model can account for errors, that is, misses and false
alarms. Misses occur when the quit unit is selected prior
to selection of the target. In addition, motor errors (see
below) generate both misses and false alarms, even
when the decision with respect to target presence is
correct. Our adoption of a perfect identification
approach was motivated by the very low rate (usually
below 2%) of false alarms in the empirical data sets we
fit. Provided with data sets with higher false-alarm
rates, the model should be elaborated by adopting an
error-prone binary choice approach to identification
(see also the Discussion).

In summary, when a target is identified, a ‘‘target-
present’’ decision is made and the observer proceeds to
the response execution stage. Alternatively, if a
distractor is identified, the item is inhibited, and the
weight of the quit unit is incremented—a process we
describe next.

Nontarget inhibition and quit unit activation

When a nontarget is identified, it is immediately and
fully inhibited. This is implemented in the model by
setting its weight (for the rest of the trial) to zero. In
effect, this eliminates the possibility of item reselection
(similar to Itti & Koch, 2001). Thus, the model
implements perfect memory: Observers never return to
reexamine a rejected item. Note that this assumption
could be relaxed if necessary by replacing full inhibition
with a partial inhibition mechanism. For example, the
weight of an identified distractor could be inhibited by
p% where p is a free parameter. This would allow the
model to implement imperfect memory: Rejected items
could be reselected, albeit with a reduced probability.

A second event that follows item inhibition (after
having rejected an item as a nontarget) is that the
weight of the quit unit is increased according to the
following rule:

wquit;new ¼ wquit;old þ Dwquit: ð4Þ
The increase of the quitting weight reflects an increased
tendency to terminate the search following each
additional distractor rejection. Hence, after n rejec-
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tions, the weight of the quit unit will be nDwquit (recall
that the initial weight is zero). The size of Dwquit is a free
parameter and considered to be under strategic control
of the observer. For a more difficult task, Dwquit would
probably be smaller than for an easier task, to allow for
inspection of a higher proportion of the display items
prior to search termination. For a pop-out task, Dwquit

would be so large that after the first selection-
identification cycle, the probability of terminating the
search is very close to one. Note that as more
distractors are identified and rejected, two mechanisms
are responsible for increasing the probability of
terminating search. First, the quit unit increases in
absolute (and thus in relative) strength as it is further
activated. Second, as distractors are inhibited and fewer
items are active on the salience map, the weight of the
quit unit increases relative to the total weight of the
saliency map, as a consequence of the reduction in
effective set size. Note also, that the weight of the quit
unit does not depend directly on the elapsed duration
of the trial, but rather on the number of distractors that
have already been rejected.

An appealing consequence of the (full) distractor
inhibition and the quit-activation processes is that
following the rejection of all items in a target-absent
display, the search automatically terminates. In fact,
once all distractors have been rejected, they all have
weight zero so that the saliency map is effectively
weightless and the relative weight of the quit unit is
one, which means that it is necessarily selected. Of
course, the quit unit could also be selected already prior
to full display identification.

As discussed above, we conceive of the weight of the
quit unit as a strategic variable. As such, Dwquit could
depend on set size, and it could even vary within a given
trial. Nevertheless, guided by parsimony, we chose to
maintain Dwquit fixed within trials and across set size.
Future implementation might provide extended flexi-
bility to the quit unit activation process.

Finally, we assume that both distractor inhibition
and quit-unit activation are immediate or, alternatively,
that their durations are absorbed in the identification
stage (the Wald distribution). Of course, this assump-
tion, too, could be relaxed in future applications.

Motor errors

We assume that the response execution stage can be
distorted by motor errors with a probability m, which is
a free parameter of the model. In case of a motor error,
the alternative decision-incongruent response is exe-
cuted. We assume that the parameter m is maintained
at a fixed level across set size and that motor errors
occur independently across trials and of the preceding
processing stages.

Since item identification is perfect in the model, false
alarms can only ensue as a consequence of motor errors
on target-absent trials. Similarly, on target-present
trials, if the target has been identified, then a motor
error would yield a miss. Nevertheless, on target-
present trials, motor errors do not necessarily cause
response errors. For instance, if the quit unit is selected
prior to target identification, then an erroneous target-
absent decision is made. Consequently, a motor error
would yield a target-present response, which is classi-
fied as a hit, saving the observer from a miss.

Residual time

The residual time Ter accounts for all reaction time
variance which is not explicitly accounted for by the
search processes described above. It, thus, incorporates
encoding times, the time necessary for the first target to
be selected, and post-decisional processes such as
response planning and execution. We assume that the
residual time is independent of set size. As soon as the
decision with respect to target presence has been made,
a compatible response (subject to motor errors) is
executed.

The residual time is modeled as a shifted exponential
distribution with shift Tmin and with rate c (Schwarz,
2001, 2002). Frequently, residual times are modeled
with a uniform distribution with mean Ter and range
ser.

2 Schwarz used an exponential distribution for
residual time. We added a shift parameter since in the
data analysis, a cutoff for fast RTs was applied (see
Data analysis methods). Wolfe et al. (2010) discussed
the idea that part of the difference in the RT
distributions between target-present and target-absent
trials might be attributable to differences in the residual
time for ‘‘target-present’’ and ‘‘target-absent’’ respons-
es. We decided to put this idea to a test by allowing the
shift parameter to vary freely across responses. Thus,
the model includes two shift parameters: T

yes
min and Tno

min.
This model was compared with one that included a
single shift parameter to test which of the two
alternatives would account better for the data (see
statistical methods). The residual time parameters are
maintained at a fixed level across set size. In addition,
the residual time is independent across trials and
independent of the decision time components (item
identification):

fTer
ðtjTmin; cÞ ¼ ce�cðt�TminÞ t � Tmin

0 t,Tmin
:

�
ð5Þ

In the present model, the target-identification
process and the residual time ‘‘carry the RT burden.’’
As item (or quit-unit) selection, nontarget inhibition,
and quit-unit activation make no contributions to RT,
trial RTs are the sum of a residual time and a multiple
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of independent identification times. In summary, if k
display items were identified prior to response execu-
tion, then the trial RT would be distributed as the sum
of k þ 1 independent samples: a single shifted
exponential residual time and k identification Wald
samples. The overall RT distributions are then prob-
ability mixtures across different values of k weighted by
the probabilities that the trial terminated following the
kth item selection (see Appendix A for mathematical
details; see also Figure 3 for an illustration).

Behavioral predictions of competitive guided
search

A highly attractive feature of the current model is
that it is mathematically tractable: Predictions for
behavioral dependent variables such as accuracy rates
and RT distributions could be derived in analytic
formulas, rather than by simulation. This is advanta-
geous from a theoretical but also from a practical
computational perspective.

First, when a model is fully described analytically, its
behavioral predictions for accuracy and RT distribu-
tions can be calculated precisely. By contrast, if the
model is solvable only by methods of computational
simulation, its predictions can only be estimated and
are thus subject to simulation error (running the
simulation twice would produce somewhat different
results). In the latter case, when the model predictions
are examined vis-à-vis empirical data, one is forced to
consider sampling errors both in the data and in model
predictions, complicating data analysis procedures.
Deriving predictions based on simulations of huge sets
of trials could somewhat mitigate this concern, though
nevertheless potentially resulting in enormous compu-
tational complexity. Indeed, when the model is fitted to
empirical data, the parameters space is searched for the
‘‘best-fitting’’ parameters, that is, those that yield the
closest match between model predictions and data. In
the process, model predictions should be derived for
(usually, a very large set of) candidate parameters. If
each of these derivations is based on an enormous set of
simulated model trials, then the fitting procedure might
run excruciatingly slowly, exhausting the computa-
tional resources. Consequently, one would be forced to
derive predictions based on smaller simulated samples.
But then, prediction errors might become substantial
and compromise the fitting procedure in its quest for
the best-fitting parameters. In contrast, by utilizing
analytical formulas, one can derive model predictions
much faster, sometimes by orders of magnitude. Fitting
procedures are hence both more efficient and more
robust. In summary, mathematical tractability is a
highly desirable property of a model, which should
render the model preferable to work with, ceteris

paribus. We refer readers who are interested in the
analytical derivation of the error rates and RT
distributions predicted by the present model to the
Appendix A.

Methods

Brief description of the experimental methods
of Wolfe et al. (2010)

Wolfe et al. (2010) collected data from a total of 28
participants for three classic search tasks: nine partic-
ipants in a feature search (with target defined by color),
10 in a conjunction search (with target defined by a
combination of color and orientation), and nine in a
spatial configuration search (with a target 2 among
distractor 5s). In each task, four set sizes (3, 6, 12, and
18 items) were crossed with two trial types (target
present vs. absent) to create a factorial design with a
total of eight conditions. For each participant, about
500 trials were run for each of the eight factorial cells.
Both factors were intermixed within experimental
blocks, that is, they varied randomly from trial to trial.3

Data analysis methods

As a first step in the data analysis, ‘‘contaminated’’
trials were excluded. For the sake of maintaining
consistency and comparability with Wolfe et al. (2010),
we used their exclusion criteria: Assuming that
unreasonably fast and slow trials represent anticipa-
tions and attentional lapses, respectively, all trials with
RTs , 200 ms and RTs . 4000 ms were removed for
the feature and conjunction search tasks, and all trials
with RTs , 200 ms and RTs . 8000 ms were removed
for the spatial configuration task. Thus, a total of 80
trials, or 0.07% of the entire data set (for all
participants and across the three search tasks), was
eliminated from analysis (see Wolfe et al., 2010, for
further details).

Model fitting

Each of the three search tasks were fitted separately,
that is, without parameters being constrained across the
tasks. For each data set, we fit the model to the RT
distributions of correct responses and to the accuracy
rates. Due to the scarcity of errors, we did not attempt
to fit error RT distributions. Fits were conducted at the
level of individual participants as well as for the
average observer, obtained by averaging data across
participants (see below).
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We now describe the process of fitting the model to
the empiric data for an individual participant (in a
single search task). We adopted Heathcote, Brown, and
Mewhort’s (2002) Quantile Maximal Probability
(QMP) method for our purposes: For each participant,
set size s, and trial type t (target present or absent), we
computed the 0.1, 0.3, 0.5, 0.7, and 0.9 quantiles of the
correct RT distributions. These quantiles serve as bin
or category separators, hence six bins were generated.
A seventh category was defined by all the error trials.
We then calculated the frequency of trials in each
category. For a set size s and a trial type t, we denote
these frequencies by O(t, s)1, O(t, s)2, . . . , O(t, s)7. The
goal in fitting the model is to find a parameter set which
predicts a distribution of trials (across the seven
categories) that will best match the empirical distribu-
tions.

For a given parameter set (see Table 1) and for each
experimental condition of target type and set size, we
computed the proportion of simulated trials that
occupy each of the seven categories x(t, s)i, 1 � i � 7.
For example, x(t, s)1 is the proportion of simulated
responses (for set size s and trial type t) that were
correct and whose RT was below the 0.1 quantile of the
correct empirical distribution. Similarly, x(t, s)5 is the
proportion of simulated responses that were correct
and whose RT was between the 0.7 and 0.9 quantiles of
the correct empirical distribution. x(t, s)7 is just the
proportion of simulated error response. Note that the
sum of these category proportions is 1:

P7
i¼1 x

t;s
i ¼ 1.

Calculation of the xt;si was based on the analytical
equations we derived (see Appendix A). Thus, xt;s7 are
simply Ps

miss or P
s
FA, that is, the predicted probabilities

of miss and false alarms associated with set size s (see
Equations 31, 35). The calculations for 1 � i � 6 rely
on the RT quantiles. For a given RT quantile q, the
predicted proportion of hits and correct rejections with
RT � q are given by Ps

hit � Fs
hit (Equations 30, 32) and

by Ps
CR � Fs

CR (Equations 34, 46), respectively. Ps
hit and

Ps
CR are the predicted probabilities of hit and correct

rejections (for set size s), respectively, and Fs
hit and Fs

CR
are the predicted cumulative density functions (for set
size s) for the RTs for hits and correct rejections,
respectively. The xt;si s were readily obtained from those
predictions. For example, xt;s2 was the difference of the
predicted proportions for the 0.3 and the 0.1 quantiles
for trial type t and set size s.

In the QMP method, the data is interpreted as being
drawn from a multinomial distribution: The model
predicts categorical probabilities, and each empirical
trial is classified as belonging to one of the (seven)
categories. In this perspective, the likelihood of the
empirical data given the model predictions for the
current parameter set is:

Q7
i¼1 xðt; sÞ

Oðt;sÞi
i ; and across all

set-sizes and data types the likelihood is:

L ¼
Y

s¼3;6;12;18

Y

t¼target present; absent

Y7

i¼1

xðt; sÞOðt;sÞii : ð6Þ

Finding the best-fitting parameters involves identifying
the parameters that will maximize the likelihood of the
data—or, equivalently, that will minimize the negative
value of twice the log likelihood of the data:

2lnðLÞ ¼ �2
X

s¼3;6;12;18

X

t¼target present or absent

X7

i¼1

Oðt; sÞilog
�
xðt; sÞi

�
: ð7Þ

The search for the minimizing parameters was
conducted with an iterative Nelder-Mead (Nelder &
Mead, 1965) method, implemented as the Nedler-Mead
simplex routine (‘‘fminsearch,’’ available in Math-
work’s MATLAB). To minimize the risk of getting
caught in a local minimum, we iterated the simplex
routine several times (typically between 4 to 10 times),
with each new iteration starting with the parameters
obtained from the previous iteration.4

Initially, we fit the models with no constraint on the
mean identification time per display item (see
Appendix B). This resulted in very low identification
times for all participants in the conjunction task (range:
9–46 ms, mean 25 ms). Because these identification
times seemed too low to be psychologically plausible,
we decided to constrain the fits by imposing a minimal
mean identification time of 50 ms. For both the spatial
configuration and feature search tasks and for all
participants, the mean identification time exceeded 50
ms; thus, there was no need to explicitly impose this
constraint in the fits for these tasks. Importantly,
imposing this constraint trades goodness of fit for
psychological plausibility and interpretability.

As there are eight (2 Trial Type · 4 Set Sizes)
combinations and seven categories for each combina-
tion, there is a total of 8 · (7� 1)¼ 48 free data points
to which the model was fit. The full model contains
right free parameters, summarized in Table 1. Thus, the
model is highly constrained.

Note that the model contains two additional
parameters that were maintained at a fixed level and
serve as scaling variables: The distractor identification
weight wdistractor ¼ 1 and the standard deviation of the
identification noise r ¼ 0.1.

In addition to fitting the model to data of individual
participants, we constructed an average observer and fit
the model to her. The empirical quantiles for the
average observer were obtained by averaging the
quantiles of the individual participants. The empirical
category frequencies O(t, s)i were obtained by summing
the category frequencies across participants. We could
thus proceed in fitting the model to the average
observer using the methodology described above.
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X-score transformations and distributions

Wolfe et al. (2010) introduced a nonparametric
normalization procedure dubbed the ‘‘x-score trans-
form,’’ which linearly scales distributions via quantile
alignment. Thus, scaling differences are removed,
whereas nonlinear properties such as kurtosis and skew
of distributions are preserved. They then used this
procedure to study properties of RT distributions and
to compare empirical versus model-predicted distribu-
tions. For the sake of comparability with their work,
we utilized the x-scoring procedure as well.

The x-score distributions for the empirical data were
calculated for each set size and trial type separately:
For each individual, we calculated the 0.25 and 0.75
percentiles of the appropriate (trial type, set size)
correct RT distribution. The correct RTs were then
linearly transformed such that these percentiles were
transformed to the (arbitrary) values �1 and 1,
respectively, to obtain the x scores. Next, the x scores
for the different individuals where pooled together and
the distribution of the pooled x scores was estimated
via kernel-estimation procedures (implemented by the
‘‘ksdensity’’ function in MATLAB).

To calculate x score for model predictions, we
generated simulated data. For each set size, trial type,
and individual, we simulated 100,000 model trials from
the best-fitting parameters for that individual. We then
proceeded in the calculations as above with the
simulated data instead of the empirical data.

Model comparison

In addition to the full eight-parameter model, we
also fitted certain submodels which were obtained by
constraining parameters of the full model. First, to
determine whether incorporating two mean residual
RTs (one for each of the detection responses) improves
fits, relative to having a single mean residual RT
parameter, we compared the fit of the eight-parameter
full model to the fit of a seven-parameter submodel that
was obtained by constraining Ter(yes)¼ Ter(no) , Ter.
In addition, in order to test whether having guidance
towards targets improves the fits in the spatial

configuration search task, we compared the full model
to a seven-parameter submodel that was constrained by
wtarget ¼ 1.

We conducted a further model comparison analysis,
which was motivated by suggestions that in a con-
junction search, participants segment the search display
into two subsets (e.g., the red vs. the green items) and
first examine items whose color matches the target’s
color on the previous trial (e.g., Kaptein, Theeuwes, &
van der Heijden, 1995; Geyer, Müller, & Krumme-
nacher, 2006). In CGS, such a strategy would be
implemented by top-down assignment of higher sa-
lience weights to items of one color and lower salience
weight to items of the other color. Specifically, we
constructed an alternative conjunction model in which
we set the weights of all green items to zero, reflecting
the assumption that from display onset, green items are
fully inhibited (recall that the target was always red
vertical)—which is tantamount to excluding the green
items from the search set. We dub this model variant
the half-set-size model, to distinguish it from the full-
set-size model in which all distractors have weight one.
For the half-set-size variant, model fitting procedures
were identical, save a single change: Set sizes were
adjusted to half values of 2, 3, 6, and 9 instead of the
actual set-sizes 3, 6, 12, and 18.

Model comparisons were performed with the Akaike
information criterion (AIC; Akaike, 1974) and the
Bayesian information criterion (BIC; Schwarz, 1978).
In principle, both criteria implement a tradeoff between
goodness of fit, gauged by�2ln(L) for the best fitting
parameters, and model parsimony, measured by the
number of free parameters. They thus penalize models
for their complexity, so as to test whether the
improvement in fits provided by the more complex
models justifies their reduced parsimony. When select-
ing one from several alternative models, the model with
the minimal criterion value is preferred. Both criteria
implement different penalties on the number of
parameters. AIC taxed each of the k parameter by two,
whereas BIC by log(N), where N is the total number of
observations per participant. Consequently, AIC is
more liberal than BIC with respect to incorporating
additional model complexity (as long as log(N) . 2).
Note that k¼ 8 or k¼ 7 for the full or the submodels,
respectively, and N ; 4000 per participant. For the
half-set-size variant of the conjunction task, k¼ 8.

BIC ¼ �2lnðLÞ þ logðNÞ � k ð8Þ

AIC ¼ �2lnðLÞ þ 2k: ð9Þ
We can also utilize the AIC and BIC values obtained

for the individual participants to calculate the AIC and
BIC values for the entire group. In this approach, the
individual fits are adjoined and perceived as a single fit
for the entire data set across participants. Thus, the

Parameter Meaning

wtarget Target search weight

Dwquit Quit unit weight increment

m Identification drift

h Identification threshold

m % of motor errors

Tyes
er ;T

no
er Shift of residual RT for yes and no responses

c Rate of residual RT

Table 1. Free parameters of the model.
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above AIC and BIC formulas are used but with group
negative twice log likelihood, group-k, and group-N
values that are obtained by summing the values (of the
negative twice log likelihood, k, and N, respectively)
across individuals. An alternative approach for per-
forming model comparisons at the group level is to
calculate AIC and BIC for the average observer. In this
approach, we use the negative twice log likelihood from
the fit for the average observer, k is still eight (full
model) or seven (submodels), and N is obtained by
summing the Ns for the individual participants.

Results

First, we present the best-fitting model and several
qualitative properties of the empirical data which are
captured by the model performance. Second, we will
quantitatively test the implicit assumption that a spatial
configuration (2 vs. 5) task is prototypical for unguided
search, in which the target salience is equal to that of
nontargets. Third, we explore the difference in residual
times between target and nontarget trials.

Qualitative properties of the model
distributions

Wolfe et al. (2010) displayed the benchmark RT
distribution data mainly in the form of density
functions. Here, we display the same data along with
the data produced by the best-fitting model in form of
five quantiles, specifically, the 0.1, 0.3, 0.5, 0.7, and 0.9
quantiles. In Figures 5–7, the four set sizes (3, 6, 12, and
18 items) are depicted on the x axes. The quantile data
for one condition are displayed as vertical ‘‘stacks.’’
The data point in the middle is the median and thus
comparable to displaying the central tendency, as is
frequently done in studies reporting mean or median
RT only. The distance between the lowest and highest
data point (0.1 and 0.9 quantiles) indicates the
dispersion of the data. For instance, it becomes
apparent that for the spatial configuration task (Figure
5), both the central tendency and the spread increase as
set size increases. Further, the shape of the distribution
can be read from the distance of the 0.1 and the 0.9
quantiles from the median. In all conditions, it can be
seen that the RT distributions have a positive (right)
skew, that is, the slower tail is longer than the fast tail,
with both the empirical and the model data.

Visual inspection reveals a very close similarity
between the empirical and the model data, for both the
RT distributions and the error rates (see Figures 5–7)
The mean differences between the empirical and model
RT quantiles across both target-present and target-

absent trials and across all set sizes are 35 ms, 22 ms,
and 5 ms for the spatial configuration, conjunction, and
feature search tasks, respectively. Error rates across
target presence and set size differ between the empirical
data and model fits by, on average, 0.5%, 1.4%, and
0.3% for the spatial configuration, conjunction, and
feature search tasks, respectively.

Second, the effects of set size are very minor in the
feature search task. For the conjunction and, even
more so, the spatial configuration search, the shapes of
the RT distributions change substantially with set size.
Specifically, the whole distributions are shifted to
slower RTs with larger set sizes. That is, not only the
mean RT but specifically also the head of the
distribution, the 0.1 quantiles, become slower as set size
increases. Further, the distributions increase in spread
(apparent in the increasing distance between the 0.1
and 0.9 quantiles in Figures 5–7) as set size increases.
With set size, ‘‘target-absent’’ RT distributions, too,
become slower and wider and miss rates increase for the
conjunction and spatial configuration tasks. Both in the
model and the empirical data, miss rates for the
inefficient tasks show a dependency on set size, whereas
false-alarm rates stay relatively constant (the model
constancy of false-alarm rates is an intrinsic property of
our model implementation, as the sole cause of false
alarms are motor errors, which are independent of set
size; see above).

Third, the RT distributions of target present and
absent responses strongly overlap. This becomes
apparent in Figures 5–7 by comparing the ‘‘stacks’’ of
target present and absent quantiles for one set size: the
closer the 0.1 quantile of absent RTs is to that of
present RTs, the larger the overlap.

Finally, we applied the x-score transform of RT
distributions proposed by Wolfe et al. (2010). They
presented this method of normalization as a means of
comparing the shapes of different distributions with
each other. The purpose of the x-score method is to
remove scaling differences in distributions while
preserving nonlinear properties such as kurtosis and
skew (see statistical methods).5 The x-transformed RT
distributions for target-absent and target-present trials
for the empirical and model data are presented in
Figures 8, 9, and 10 for the spatial configuration,
conjunction, and feature search tasks, respectively.

Note that the simulated data in the exhaustive model
of Wolfe et al. (2010) qualitatively failed to catch the
shape of empirical RT distributions (see their figure 8),
especially with respect to the skew of the distributions:
For the spatial configuration task, the empirical data
were strongly skewed, but the simulated data were
symmetrical. In our model, the normalized x-score
distributions are remarkably similar to the empirical
data.
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Table 2 presents the best-fitting parameters for the
average participant in the feature, conjunction, and
spatial configuration tasks, respectively (please refer to
Tables C1–C5 in Appendix C for the recovered
parameters for the individual participants).

The effect of guidance

The investigation of search behavior is usually based
on observable measures such as RTs or accuracy, from
which conclusions are drawn with respect to the nature
of the constituent mental processes. These variables are
hidden and hence must be inferred from observable
variables (e.g., slopes of RT/set size functions). A
computational model provides a convenient framework
for the investigation of hidden variables, such as
guidance or search order. In fact, an important
advantage of computational model lies in their formal
explication of hidden cognitive processes. The recov-
ered parameters of the model allow quantification of
these processes, thus providing an inferential route to
backstage cognitive operations.

For example, utilizing the recovered parameters
permits tracking of how guidance by salience actually
works in the model for the three different tasks. A very
high salience (wtarget) should result in pop out, that is,

the target should almost always be the first item to be
selected. For the conjunction task, it is usually assumed
that there is some guidance, that is, the target has a
salience somewhat greater than the distractors, making
it more probable that the target is found in (relatively)
early, rather than late, selections. The spatial configu-
ration task is usually assumed to be prototypical of a
nonguided search task in which the saliency map
conveys no information with respect to which item is
more likely than others to be the target. Thus, it is
usually assumed that the search order is completely
random and that the target is equally likely to be
selected at each position in the search order. Support-
ing these expectations, Wilcoxon signed-rank tests
confirmed that guidance was larger in the feature (pop
out) relative to the conjunction task (z ¼ 3.633, p ,
0.001); in addition, it was larger in the conjunction than
in the spatial configuration tasks (z¼ 3.06, p¼ 0.002).
Note that in both comparisons, we used the full-set-size
variant of the conjunction task.

Consider next the left panel of Figure 11, which
displays the probability that the target is selected as the
first, second, etc. item for the best-fitting parameters of
the three tasks (to the average observer). The right
panel displays the probability that a target-absent trial
terminated after selecting (and rejecting) k display
items. As can be seen, the assumptions with regard to

Figure 6. RT distribution and error data for the conjunction search task for the half-set-size variant. The RT distributions for the full set

size variant are presented in Figure C1, Appendix C. The structure of the figure is equivalent to Figure 5.

Journal of Vision (2013) 13(8):24, 1–31 Moran, Zehetleitner, Müller, & Usher 16

http://www.journalofvision.org/content/13/8/24/suppl/DC1
http://www.journalofvision.org/content/13/8/24/suppl/DC1


substantial guidance in both the feature and the
conjunction search task were supported by the model;
surprisingly, though, there also seems to be some
guidance for the spatial configuration search. Specifi-
cally, it is more likely to find the digit 2 in early
selections than predicted by random search order;
restated, the target is less likely to be selected at later
positions than would be predicted by a random search
order (the solid horizontal line represents the model
prediction without guidance, i.e., with random search
order).

This observation is also corroborated by the best-
fitting parameters: the guidance parameters wtarget for
the spatial configuration task in Table 2 were greater
than one for seven out of nine of the participants. A
Wilcoxon signed-rank test for the guidance parameters
revealed them to be significantly larger than one, z ¼
�2.073, p¼ 0.038.6

We also conducted a model comparison analysis.
For that purpose, we tested whether a model in which
the salience of targets is enforced to be equal to that of
the distractors (wtarget¼ 1) does indeed produce a worse
fit than the model reported thus far, in which wtarget is a
free parameter. We used the BIC and AIC criteria to
quantify whether the improved fit (i.e., reduced
negative log likelihood) due to the additional guidance
parameter is justified by the reduced complexity. Table
C1 presents the model comparison analysis. For eight
and, respectively, seven out of nine of the individuals,
the full model is preferable to the no-guidance
submodel version, according to AI and BI criteria,

respectively. The same conclusion holds for the average
observer as well as for the group AIC and BIC values.
On this basis, we conclude that a small guidance
component towards the target is operative even in the
spatial configuration search task, under the multiple
session protocol that allows intensive training with the
stimuli; it is possible that this component would
disappear in single-session data.

Searching thorough half of the set in the
conjunction task

Recall that we obtained two sets of fits for the
conjunction tasks: The full-set-size variant in which all
nontargets had equal weight of one, and the half-set-
size variant in which the weight of all green items was
set to zero and the weight of the remaining nontargets
was set to one. Note that because the number of free
parameters in both variants is identical (i.e., eight),
comparing the AIC or the BIC values (or simply the
negative twice log likelihood) is equivalent. In these
analyses, the half-set-size variant was superior to the
full-set-size variant for 7 out of 10 of the participants as
well as for the average participant and the group (see
Table C5). These results indicate that most participants
are able to inhibit at least some of the distracters (e.g.,
the green distracters) using top-down modulation of
attention towards the target and away from the
nontarget color, thus effectively reducing the search set
size.

Figure 7. RT distribution and error data for the feature search task. The structure of the figure is equivalent to Figure 5.
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The role of residual times for target-present
versus target-absent trials

Wolfe et al. (2010) considered the possibility that
part of the difference in RT distributions between
target-present and target-absent trials might be attrib-
utable to differences in the residual time for ‘‘target-
present’’ and ‘‘target-absent’’ responses. We decided to
test this idea by comparing the full model with two shift
parameters—Tyes

min, T
no
min—with a submodel obtained by

constraining these shifts to be equal T
yes
min¼Tno

min ” Tmin.
Analyzing the estimated residual RTs, a Wilcoxon

signed-rank test showed that the shifts in residual times
for ‘‘target-present’’ and ‘‘target-absent’’ responses do
not differ across participants for the spatial search task,
z¼�0.415, p ¼ 0.678. By contrast, for both the
conjunction task (z¼�1.784, one sided p¼ 0.037) and
the feature task (z¼�2.173, p ¼ 0.03), the shift in

residual RT is longer for the ‘‘target-absent’’ response,
Tno

min . Tyes
min.

Additionally, a model comparison analysis revealed
that for six (five) out of the nine individual participants
in the spatial configuration task, AIC (BIC), preferred
the full model over the submodel obtained by
constraining the residual times to be equal. This was
also the case for the entire group, but not for the
average observer, whose fit preferred a single shift
parameter. For the conjunction task, the picture was
more consistent:T model with two shift parameters was
preferred for 7 out of the 10 individual participants, as
well as for the average observer and the group,
according to both AI and BI criteria. Note that in this
analysis we used the half-set-size variant (which yielded
overall better fits than the full-set-size variant). Finally,
for the feature task, the full model was preferred for
eight (six) out of the nine individual participants as well

Figure 8. X-score distributions for the spatial configuration task correct RTs. The panels in the left column depict the empirical data,

those in the right column the model predictions. The top row corresponds to target-present trials and the bottom row to target-

absent trials. In each panel, the different lines represent different set sizes, with smaller set sizes corresponding to more desaturated

colors. The x-score data is pooled across individuals.
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as by the average observer and the entire group, in
terms of both AI and BI criteria.

In summary, in both the conjunction and the feature
task, model comparison as well as estimated parameter
comparison approaches converge on the conclusion
that the shift in the residual time for ‘‘target-absent’’
responses is larger than that for ‘‘target-present’’
responses. For the spatial configuration task, the results
are mixed: While for most of the participants and the
entire group, the fit with two shift parameters is
advantageous, a comparison of the fitted shift param-
eters reveals no difference between ‘‘target-present’’ and
‘‘target-absent’’ responses at the group level.

The larger shift in residual time for ‘‘target-absent’’
as compared to ‘‘target-present’’ responses is important
for the model’s ability to account for the RT data in the
feature task. As discussed above, the large weights of
both wtarget and wquit result in examination of a single
item prior to response, on both target-present and

target-absent trials, in a substantial majority of the
trials (more than one display item is examined in only a
small minority of trials). Thus, the major part of the
difference in response RTs between the ‘‘target-
present’’ and the somewhat slower ‘‘target-absent’’
responses is attributable to the larger residual shift for
‘‘target-absent’’ responses.

Consider now a subtle difference between target-
present and target-absent trials in which a single item
was checked prior to response. On such a target-present
trial, the model terminates after a single iteration: The
target is selected and identified, and a response ensues.
On target-absent trials, by contrast, on the first
iteration a distracter is selected, identified, and inhib-
ited, and the weight of the quit unit is incremented.
Only at the beginning of the second iteration, the quit
unit is selected and the trial terminates. The upshot of
this comparison is that target-absent trials require
additional processes, such as inhibition, quit-unit

Figure 9. X-score distributions for the conjunction task correct RTs (full-set-size variant—the resulting x-score distributions for the half-

set-size variant are indistinguishable from the present figure by naked eye). The organization of the graph is the same as that of Figure

8.
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activation, and quit-unit selection, which are not
operative on target-present trials (with a single
selection). More generally, for target-present and
target-absent trials that both terminate after selection
of k display items, the first involves k model iterations,
whereas the latter involves kþ 1 iterations. Recall that
in the current model, we assumed that inhibition and
quit-unit inhibition and selection occur instantaneous-
ly. Modeling durations for these processes might thus
do away with the necessity of having two shift
parameters with Tno

min . T
yes
min.

Discussion

For both humans and animals, searching the
environment for a target is essential to their survival.
Laboratory visual search tasks offer a controlled proxy
for the more ecological situations, in which one forages
for food, prey, or mates, and in which mistakes are

costly, while speed is also of the essence. Over the last
30 years, intensive research has been conducted within
this experimental paradigm, resulting in the develop-
ment of a number of visual search models that account
reasonably well for mean RT and error rate data. In a
recent, seminal paper, Wolfe et al. (2010) reported
benchmark RT distribution data for three classic visual
search tasks (feature, conjunction, and spatial config-
uration searches), which challenge all visual search
models, including their previous guided search model.
Here, we presented a computational model of visual
search—competitive guided search (CGS)—a variant of
the guided search model that is able to account for the
RT distributional data in all three tasks. We have
shown that this model accounts simultaneously for
both error rates and RT distributional properties
(quantiles and the form of x-transformed density
distribution; see Figures 8–10), for all set sizes and for
both target-present and target-absent displays. In
particular, the model is able to meet the challenge
posed by Wolfe et al. (2010): low miss rates along with

Figure 10. X-score distributions for the feature task correct RTs. The organization of the graph is the same as that of Figure 8.
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highly overlapping target-present and target-absent RT
distributions. Moreover, the model achieves this with a
relatively small number of free parameters (eight free
parameters and 48 free data points per task per
participant). In addition, by fitting data to individual
participants, we were able to estimate individual
underlying search parameters (e.g., search guidance,
identification drift rate, etc.).

We begin by discussing the novel components of the
model that allow it to face the challenge posed by
distributional RT data and we consider its implications
for search processes. Next, we discuss the model’s
limitations and possible extensions and its relation to
other search models.

Competitive guided search (CGS): What’s new?

CGS is a two-stage model like guided search,
consisting of a selection-identification cycle, where
salience guides the order in which items are selected for
identification. A critical component of the model is the
termination mechanism, which tends to terminate the
search, following additional nontarget identifications,
with an increasing conditional probability (see also

Cousineau & Shiffrin, 2004; Wolfe & Van Wert, 2010).
Several aspects of our implementation are novel. First,
GCS has a mechanistic model for the decision
termination process which is integrated into the search
architecture (see Zehetleitner et al., 2009). Second, CGS
implements a novel implementation of the selection
decision, which is based on Luce’s choice axiom. Third,
the model incorporates a shifted exponential distribu-
tion for the residual times (Ter), rather than the usual
rectangular distribution (e.g., Ratcliff, 1978; but see
Schwarz, 2001, and discussion in Wolfe et al., 2010).
We will discuss each of these issues in turn, before
briefly considering the model’s implications for guid-
ance in visual search.

Termination rule

CGS implements a competitive connection from the
units of the salience map to the termination unit. That
is, the probability of terminating search is reduced in
proportion to the total (summed) activity on the
salience map. In addition, we assumed that following
nontarget identification, the salience of an item is
inhibited (for the remainder of that trial). This has
three important consequences. First, as more and more

Task Variant wtarget d h Dwquit T
yes
min Tno

min c m h/da

2 vs. 5 Guidance 1.511 0.252 0.029 0.019 0.413 0.41 11.793 0.012 0.115

2 vs. 5 No guidance 1 0.23 0.02 0.01 0.41 0.44 12.48 0.01 0.103

Conjunction Full set 4.958 0.286 0.014 0.162 0.368 0.367 14.810 0.011 0.05

Conjunction Half set 1.57 0.25 0.01 0.02 0.36 0.39 15.32 0.01 0.056

Feature 599.8 0.457 0.063 869.7 0.239 0.256 48.104 0.015 0.138

Table 2. Best fitting parameters for the average participant in the three different tasks. For the spatial configuration (2 vs. 5) and the
conjunction task, both model variants are presented. The recovered parameters for individual participants are presented in Appendix
C. Notes: The right-most column is the estimation of the mean identification time per display item. It is obtained by dividing the
identification threshold by the identification drift and is not another free model parameter.

Figure 11. The left panel presents the probability of selecting the target (on target-present trials) at the kth position. The right panel

presents the probability of terminating search after having checked k nontarget items.
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items are selected and identified as nontargets, and
consequentially inhibited, search termination proba-
bility increases. Eventually, when no items are left on
the salience map for further inspection, the probability
of terminating search becomes one. Second, as set size
increases, the total activity on the salience map
increases; as a consequence, search termination is
delayed, resulting in slower target-absent RTs. In this
way, CGS provides a mechanism that makes the
termination probability dependent on the number of
unexamined items in the display, based on interactions
alone. Finally, when a salient target is present and
wtarget . 1, the quit unit faces a stronger competition
for selection compared to when a target is absent.
Consequently, the propensity to terminate the search
after k nontargets are identified is stronger for target-
absent than for target-present trials. This tendency
benefits the searcher as it acts to reduce the prospect of
missing the target (there is a weaker tendency for early
termination when a target is present), while at the same
time speeding up correct rejections (a stronger tendency
for early termination when a target is absent).

A second component of the search termination
mechanism is that the ‘‘weight’’ of the termination unit
increases with each selection. This weight increment is
governed in the model by the parameter Dwquit, which
determines the extent to which the propensity to
terminate the trial increases. In the extreme, if Dwquit is
small enough, all items have to be examined before
search is terminated automatically; by contrast, if
Dwquit is large, search is terminated after the first item
has been identified. In our data fits, Dwquit is estimated
for each task separately, reflecting three different
strategic settings for the three different tasks. In the
feature search, a ‘‘target-absent’’ response is triggered if
the first item turns out to be a nontarget. Only in a very
small proportion of all trials, a second item is identified.
For both the conjunction and the spatial configuration
search, in about 50% of all trials, search is terminated
after all items have been scrutinized. In the other 50%,
fewer items are identified before quitting (see Figure 4,
right panel). Here, the difference with exhaustive
search, which would result in 100% of search termina-
tions after checking all items, becomes apparent. This
premature termination can be regarded as a type of
informed guess (Cousineau & Shiffrin, 2004). As is
apparent in Figure 4 (left panel), the higher the salience
of the target, the more likely it is that the target is
selected early rather than late. For example, for pop-
out targets, the probability that a target is present if the
first selected item was identified as a nontarget, is very
close to zero: P(no targetjthe first item is a nontarget) ;

0. Therefore, continuing to search is far from optimal,
because this effort would hardly increase the evidence
for whether a target is present or absent: The

probability that the display does not contain a target is
already close to one.

As noted above, Dwquit is a strategic parameter under
the observer’s control and can be adjusted for each
search task. Wolfe and Van Wert (2010) proposed that
observers can strategically adjust their tendency to
terminate the search even within a given task in
response to target prevalence, that is, the proportion of
target-present trials: They modeled the quitting signal
as a stochastic accumulator that is incremented
following each item that has been rejected as a
nontarget. When the accumulator reaches a threshold,
the search is terminated with a target-absent response.
According to their account, when target prevalence is
high (e.g., 98%), observers strategically increase this
target-absent termination threshold. Consequently,
more items are inspected, resulting in both slower
termination times for target-absent trials and in
decreased miss rates (see also the discussion of false-
alarm rates, which increase with high target prevalence,
below). In CGS, a reduction of Dwquit leads to the
inspection of more items and can thus produce slower
target-absent RTs and lower miss rates (as target
prevalence increases). Future research should test how
well CGS accounts for the quantitative patterns and
RT distributions in the Wolfe and Van Wert (2010)
data set and compare it with their model.

The selection process

Selection in our model is based on salience: the more
salient an item is, the higher its selection probability.
Note that salience is potentially affected by both
bottom-up and top-down factors. The selection process
itself is stochastic and relies on Luce’s Choice Axiom to
translate the items’ salience into selection probabilities
(one possible neuronal mechanism of such translation
is described below in the section Temporal dynamics of
selection). This is somewhat different from the signal
detection-based approach proposed by Wolfe et al.
(1989) and Wolfe (1994). In signal detection-based
approaches, saliency values for display items are
sampled from Gaussian distributions, one distribution
for targets and another for nontargets. The means of
the target and nontarget distributions may differ
(guidance toward targets is modeled by a larger mean
for targets) and items are rank ordered for selection
according to their saliency. Thus, while the signal
detection approach assumes a noisy salience estima-
tion, followed by a deterministic selection mechanism,
CGS takes an opposite approach with respect to the
sources of randomness in the salience estimation and
selection processes: The salience values are determin-
istic, but the selection process itself is noisy. We are not
aware of important functional differences between
these mechanisms. We opted for utilizing the Luce
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Choice Rule approach as it provided a coherent and
common mechanism/framework for addressing both
the item selection process and the termination selection,
that is, the decision of whether or not to terminate the
search process on a trial.

Residual times

The residual RTs in our models were assumed to be
distributed with shifted exponential distributions. We
also carried out simulations using the more standard
rectangular distribution of residual times, which
yielded reasonably good quantile-RT and error rate
data fits. However, in some instances, we found the
shape of the x-transformed RT density to show some
deviations from the data—in particular, for small set
sizes in the conjunction search task: For such displays,
identification decisions are rather fast, and the variance
in RT is dominated by the variance of the residual
component, making the model distributions more
rectangular than the empirical data. The use of
exponentially shifted residual RTs solved this problem.
The idea that the residual RTs are exponentially
distributed was discussed by Palmer, Horowitz, Tor-
ralba, and Wolfe (2011b), following work by Schwarz
(Schwarz, 2001, 2002).

The role of shifted ex-Wald distribution in CGS

Fitting the Wolfe et al. (2010) data with several
different RT distribution functions (Gamma, ex-
Gaussian, ex-Wald, and Weibull), Palmer et al. (2011b)
found that the ex-Wald provided some of the best fits.
In order to avoid confusion, it is important to point out
the different roles of the ex-Wald distribution there and
in the present model. First, in Palmer et al. (2011b), for
each participant and condition of task, target presence,
and set size, three parameters of the ex-Wald (and
other) distributions were estimated. These fits resulted
in a parsimonious description of the data: the 500
observed RTs per cell were reduced to three parameters
of the ex-Wald distribution.

In contrast, observed RTs in CGS are modeled as a
mixture (across k) of sums of kþ 1 random variables: k
item identifications plus a residual time. The mixture
weights are determined by the likelihood that the target
is found as the first, second, etc. and kth item (see
Equations 32, 33, 36, and 37 in Appendix A for details).
The Wald distribution was utilized to model one cycle
of identification time. For each k, the time to identify
the target is the sum of k independent Wald-distributed
random variables—which, in turn, is Wald distributed.
However, the overall distribution of the time spent on
item identifications is a probability mixture, which is no
longer Wald distributed.

Apart from these technical details, the main differ-
ence between the CGS and the Palmer et al. (2011b)
fitting approach is that CGS consists of a decision
mechanism modeling chains of decisions (see Figure 2)
which produces an RT distribution, whereas the
distributions used in Palmer et al. are not the result of a
decision mechanism. Moreover, for each observer and
task, two parameters for the Wald distribution were
estimated, whereas in Palmer et al. (2011b), 24 ex-Wald
parameters were fitted per task. Note that, overall,
CGS required eight free parameters per task.

Guidance in spatial configuration?

Spatial configuration searches (for example, search-
ing for the digit 2 amongst digits 5) are usually assumed
to be free of influences from guidance implying that the
order of item selection in such searches is virtually
random (e.g., Braun & Sagi, 1990; Egeth & Dagenbach,
1991; Moore, Egeth, Berglan, & Luck, 1996; c.f. Wolfe,
1998). Somewhat surprisingly, however, the CGS fits
for the spatial configuration task revealed the target to
be more salient than the distracters. First, a model
comparison analysis demonstrated that the model with
a guidance parameter (a free target weight parameter)
was superior to the nonguidance version (in which the
weight of the target was constrained to one). Further-
more, the estimated guidance parameters of spatial
configuration search were significantly above one (i.e.,
1.5), which was smaller than the estimated guidance for
the conjunction search, (i.e., 16.1). These finding
support the notion that there is some, albeit small,
degree of guidance toward targets in the spatial
configuration task. One possibility is that guidance was
acquired due to the substantial opportunities for
practice in the multiple-sessions protocol. Future
research should revisit this issue and in particular
investigate whether the 2 among 5s task used in Wolfe
et al. (2010) is indeed stereotypical for nonguided
search. One possibility is that guidance will be
distinguished by adopting a single-session protocol or
by rotating each letter randomly to some degree.
Alternatively, more complicated spatial configurations,
such as circles from which radial spokes extrude at 4 of
12 possible positions (Cousineau & Shiffrin, 2004), may
be better suited for the investigation of unguided
search.

Limitations and possible extensions of the
present model

A number of simplifications were made in the
present model. (a) The target/nontarget identification
was assumed to be perfect, that is, without allowing for
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the possibility of misidentifications; (b) attentional
selection is modeled as being instantaneous; (c)
memory for rejected items in the model as perfect
(items are never reselected); and (d) all of the
distractors were modeled to have the same saliency
weight. Importantly, these simplifications did not
hamper the model’s ability to account for RT
distributions and error rates. Nonetheless, these as-
sumptions could be relaxed in future studies. In fact, in
our opinion, one virtue of GCS is that it provides a
highly flexible framework that permits additional
parameters to be incorporated naturally in order to
implement further, or alternative, search mechanisms.
Presumably, equipping the model with further mecha-
nisms might take a toll with respect to complexity
(increasing the number of model parameters) but may
prove to be unavoidable in accounting for other data
sets (depending on the task variations) and rewarding
with respect to augmenting explanatory power. Below,
we discuss the adopted simplifications and numerous
potential relaxations/alternatives.

Misidentification

Error rates are very low in the benchmark data of
Wolfe et al. (2010), as they are in a large body of
behavioral visual search studies (usually below 5%).
Our model can produce misses in two separate paths:
First, it is possible that search is terminated before the
target item has been selected; second, response keys
may be confused (a motor error) even though the
observer correctly identified a target. Motor errors are
also the sole cause of false alarms in the present
implementation.

A further source of errors stems from the identifi-
cation decision: In the present model, when an item is
selected, its identity is faultlessly determined. However,
in reality, it is reasonable to assume that a target could
be mistaken for a nontarget, and vice versa. These types
of identification mistakes can be incorporated in future
versions of CGS by modeling an imperfect identifica-
tion process as a two-boundary diffusion (Ratcliff &
McKoon, 2008), as a race model (Pike, 1973; Van
Zandt, Colonius, & Proctor, 2000; Usher, Olami, &
McClelland, 2002; Brown & Heathcote, 2008), or as a
leaky-competing accumulator (Usher & McClelland,
2001). When we add the possibility of misidentification,
CGS can easily account not only for the target-absent
RT and miss data pattern of the prevalence effect, but
also for false alarms. Specifically, it has been empiri-
cally shown that as target prevalence increases, false-
alarm rates increase (while, concomitantly, miss rates
decrease and target-absent RTs increase; Wolfe,
Horowitz, & Kenner, 2005; Wolfe & Van Wert, 2010).
Wolfe and Van Wert (2010) proposed that the
prolonged target-absent RTs can be accounted for by a

strategic shift in the termination criterion, leading to
more items to be selected and checked for target
identity. Checking more items increases mean target-
absent RTs and reduces miss rates. As argued above, in
the present model, this change in the termination
criterion could be implemented as a decreased Dwquit.
Adding the possibility of misidentification to the
present model can also, possibly, explain the empirical
false-alarm rate pattern: When nontargets may be
mistakenly identified as targets (generating false
alarms), the overall false-alarm rate increases as more
items are identified, because the probability that at least
one of the identification errs builds up according to 1 –
(1 � p)k, where p is the probability of a false alarm in
one identification cycle and k is the number of cycles.
However, apart from these qualitative considerations,
it remains to be investigated how well the present model
extended for misidentification can account for RT
distribution and error data with target prevalence
manipulations. Note that the Wolfe and Van Wert
model was designed to account for RT means rather
than distributions, as each selection and identification
was counted simply as one cycle of a fixed duration. It
remains to be seen whether their model could be
elaborated to account for RT distributions as well and
how it would compare to an extended CGS.

Temporal dynamics of selection

We have assumed that the selection process is
instantaneous (obviously a simplification). Future
versions of the model may include a separate RT
distribution for the selection process, whose charac-
teristic time may depend on item salience. In this case,
the absolute target weights will affect RT distributions.
In fact, GCS offers a natural way to model item
selection times. Recall that the selection process in CGS
can be conceived as a competition between items, where
it is assumed that each item reflects a neuronal
population whose firing is characterized by a Poisson
process with rate wi. If the selection process consists of
eavesdropping on the first incoming neuronal pulse,
then each item is selected with a probability that is
proportional to its relative weight. More relevant here
is that, these selection times will be distributed
exponentially with a rate that is the sum of the weights
of the (noninhibited) display items.

For feature (pop-out) search, there have been two
recent proposals devised to understand the time until
the first item is selected as a decision that can be
modeled with an accumulator racing for a selection
criterion (Purcell et al., 2010; Zehetleitner et al., 2013).
According to these accounts, each item on the salience
map is represented by an accumulator which races
toward a selection criterion. There is also electrophys-
iological evidence from humans that the time until the
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first item is selected depends on its salience: Töllner,
Müller, and Zehetleitner (2012) have demonstrated that
the N2pc (an electrophysiological marker of spatial-
attention shifts; e.g., Eimer, 1996) has a latency that is
the shorter the more salient a feature search target is.
These findings refer to the timing of the first selection of
an item. When more items are inspected, each
additional selection may impose a different RT cost, as
well.

Imperfect memory for visited locations

We have assumed that the search process has perfect
memory. This was implemented by fully inhibiting an
identified nontarget for the remainder of the trial, thus
in effect isolating it from future search stages. In a
number of difficult search experiments, it has been
found that this is not necessarily the case (Horowitz &
Wolfe, 1998; but see Peterson, Kramer, & Wang, 2001;
von Mühlenen, Müller, & Müller, 2003). Specifically,
observers sometimes forget which items they have
already checked and revisit locations that they have
already scrutinized. Future versions of CGS can
implement a time-confined ‘‘inhibition of return’’ by
setting the weight of a nontarget to zero (or higher
value) and let it recover to its original value according
to a certain time course. Alternatively, the model could
adopt a partial-inhibition strategy, according to which
the weight of an identified nontarget is inhibited with a
certain percentage (an additional free parameter; e.g.,
70% of the item weight is inhibited) for the rest of the
trial. The gain might be reaped in the form of enabling
a smooth interpolation (of memory levels) between the
extremes of no memory whatsoever and full memory
(as in the current model version) by letting the
percentage of inhibited weight vary between zero and
one, respectively. It remains for further investigations
to test whether or not an extended partial-memory
CGS model would improve the fits for the benchmark
data and, if so, what the recovered estimates of memory
efficiency would be.

Variability in salience weights

For the feature and spatial configuration search
tasks, all nontargets had identical salience values. For
the conjunction search task, we demonstrated the
capacity of CGS to relax this restriction. In general, the
assumption of fixed weights for all nontargets can
easily be relaxed by endowing different distractors with
different weights. For example, central distractors may
be more salient that peripheral nontargets (Carrasco &
Yeshurun, 1998), or distracters may be nonhomoge-
neous and, consequently, some nontargets may be more
salient than others (e.g., Avraham et al., 2008). In fact,
considering again the conjunction task, we note that

the display consists of two different types of nontarget:
red horizontal and green vertical bars (the target is a
red vertical bar). In the full-set-size variant, we assumed
an egalitarianism of nontarget saliency. This is
tantamount to assuming that the red versus green color
and the horizontal versus vertical orientation make
identical contributions to item saliency. But this need
not be the case and, in principle, each distractor type
should receive its own weight (i.e., salience) parameter.
A first promising step in this direction has been the
fitting of the half-set-size variant, in which we assumed
that participants can fully inhibit all the green items,
effectively cutting the set size by half. For most
participants, the fits of this variant were superior to the
full-set-size fits. This demonstrates the benefit of
studying variability in variance. We note that the
assumption of perfect green inhibition may be over-
simplistic or drastic, because it is reasonable that
participants can inhibit the green items to some, yet not
full, extent. A more general approach for studying the
conjunction task could endow the two different
distractors with two different (free) salience parameters
and test whether this can further improve the fits.
Furthermore, if the fits did improve, the recovered
weight parameters might be instructive for determining
which of the two distractors is more salient and to what
extent. The upshot is that the half-set-size variant is
only a preliminary step in studying salience variability
and there is potential for further improvement.

Removing the constraint that all distractors are of
the same salience weight could extend the ability of
CGS to account for several additional finding. For
example, consider a conjunction search task in which
some of the distractors share no features with the target
(e.g., green horizontal distracters when the target is red
vertical). Such distracters are likely to receive lower
weights than distracters that share target features,
enhancing the relative saliency of the target and thus
search efficiency (see, e.g., von Mühlenen & Müller,
2000).

Further, conjunction search is easier when the target
is a red vertical among 20% red horizontal and 80%
green vertical nontargets. In that case, according to
guided search 2.0, the feature red would benefit from an
intentional top-down boost, and green would be
suppressed. In CGS, this would presumably imply a
lower weight for all green items, and a higher weight for
all red ones, turning the total balance of saliency in
favor of the target.

When the target can be a singleton defined randomly
in one of two possible dimensions (e.g., color or
orientation), it has been demonstrated that correctly
cueing or simply repeating the target dimension on the
subsequent trial speeds up mean RTs (dimension
weighting account, e.g., Found & Müller, 1996; Müller,
Reimann, & Krummenacher, 2003). In CGS this could
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be implemented by a trial-by-trial adjustment of target
weights depending on dimension cue or dimension
repetition. Of course, these are speculations that do not
replace the necessity of formal model fitting, evaluating
how well CGS fares under such conditions and what
the recovered saliency patterns are.

With respect to the discussion above, it is important
to note that, qua model of search decisions, CGS
estimates the salience (weight) parameters from em-
pirical accuracy rates and RT distributions—it does not
provide a mechanism to directly derive salience values
from the search stimuli. However, instead of fitting
saliency weights, these weights could be computed, and
serve as the salience weights in CGS, by any of a
number of salience computation algorithms (e.g., Itti &
Koch, 2001; Gao & Vasconcelos, 2007; Bruce &
Tsotsos, 2009; or others). In this way, a salience
‘‘module’’ could be plugged into CGS exempting it
from the burden of fitting saliency parameters. Such an
extension would benefit the model by virtue of
extending its scope while constraining the salience
(weight) values. Importantly, this would also serve to
reduce the number of free model parameters, thus
benefitting model fitting procedures with respect to
robustness and efficiency.

To illustrate, consider search asymmetries. Search
asymmetries refer to the fact that for some stimulus
features, changing the role of target and nontarget
affects search efficiency. Consider, for instance, a red
disk among green disks, which is found efficiently;
when swapping the target/nontarget features, present-
ing a green among red disks, search is still efficient. By
contrast, when the target is a curved line among
straight line segments, search is efficient—whereas the
reverse is not true: a straight line among curved lines is
found less efficiently. In general, if a salience module
can account for saliency asymmetries in such situations,
it is an appropriate candidate for being plugged into
CGS.

Relation to parallel models

A number of parallel search models have also been
proposed in the literature to account for visual search
phenomena. Some of these models were shown to
provide a good account for accuracy-based search
variants with briefly presented stimuli (Palmer et al.,
2000; Verghese, 2001), by relying on signal detection
mechanisms and without assuming a sequence of
attentional allocations.7 A number of models were also
proposed to account for search times in RT paradigms
with unlimited viewing times (Ward & McClelland,
1989; Palmer & McLean, 1995; Thornton & Gilden,
2007) as well as for speed-accuracy trade-off paradigms
with time-limited viewing (Dosher et al., 2004, 2010).

These models typically require strategic parameters to
account for set-size effects and have not yet been tested
on RT distribution data. We have already embarked on
another project in which we fit parallel models to the
data. Some preliminary experimentation with an RT
variant of the Verghese (2001) model—where at each
time step an accumulator is incremented by a sample
that is the maximum of n Gaussian samples for set size
n, where targets have a greater mean than nontargets—
suggests that the quality of the data fits in the 2 versus
5s search is worse than in CGS, even though more free
parameters are used. We see this as a very preliminary
investigation, as it is beyond the scope of this paper to
assess the power of parallel models, which will require
future dedicated research.

Here it should be noted that two different paradigms
have been utilized in investigations of the temporal
dynamics of visual search. The paradigm discussed so
far and used by Wolfe et al. (2010) is a free-response
paradigm in which the search display is presented until
the observer responds. The observer is instructed to
respond as fast and accurately as possible. An
interrogation paradigm, where the search display is
presented for only a brief period of time, say 50 ms, and
observers have to submit their responses after an
experimentally manipulated temporal interval, such as
100 ms, 150 ms, or 400 ms after display onset, has also
been used (a speed-accuracy trade-off paradigm). For
the latter paradigm, the resulting accuracies showed a
set-size effect that was successfully fit by PPSM
(Dosher et al., 2004, 2010). Their reason to prefer the
interrogation paradigm with limited stimulus exposure
was to exclude the possibility that eye movements dilute
processing. It remains to be studied whether or not
CGS can also account for data from a brief-presenta-
tion interrogation paradigm, thus providing a unifying
model with respect to display presentation conditions.

The PPSM and parallel diffusion models feature a
similar decision rule, but differ in the nature of the
item-classification units. Instead of a diffusion imple-
mentation for item identification in which the boundary
controls both accuracy and duration, in PPSM, the
abstract decision units have one set of two parameters
controlling the identification time and an independent
set of two additional parameters controlling identifi-
cation accuracy. Accounting for data of an inefficient
difficult heterogeneous search task (Dosher, Han, &
Lu, 2010) mandated set-size adjustment to the item
classification accuracy parameters. PPSM has not been
tested on RT distributions from a free-response
paradigm and unlimited presentation time such as the
data of Wolfe et al. (2010) and, in fact, it has not
originally been developed for such purposes. However,
PPSM—in its present form—might not be able to
account for both substantial RT search slopes and low
error rates in conjunction and spatial configuration
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tasks, because set-size-dependent changes in the deci-
sion criterion captures error data but leaves decision
times per unit unaffected. The core difficulty might be
that the low false-alarm rate indicates that distracters
are hardly ever classified as targets and, thus, that hits
are almost exclusively based on correct identification of
targets. However, as described above, in PPSM, target
identification time is modeled independent of set size.

Apart from these considerations, parallel models
meet some additional challenges. First, parallel models
are unable to account for variations in the search task,
where one has to report an attribute of the target,
instead of its presence (Bravo & Nakayama, 1992).
Second, eye movements and movements of covert
attention are assumed to be intimately linked (Rizzo-
latti, Riggio, Dascola, & Umiltá, 1987; Hoffman &
Subramaniam, 1995; Deubel & Schneider, 1996). That
is, ideally, there should be one single model that
accounts both for search with and without eye
movements. Two-stage models are more prone to
incorporate eye movements as an overt (instead of
covert) shift of attention, whereas single-stage models
would probably require a substantial change in
architecture.

Conclusion

Competitive guided search is a novel model of visual
search that meets the challenge of accounting for RT
distribution in three benchmark search tasks. The
model thus provides a unifying theoretical framework
for prototypical search tasks that have been tradition-
ally considered to be governed by qualitatively different
mechanisms ranging from nonguided serial (spatial
configuration task) to guided serial (conjunction task)
and to parallel (feature) search. The model assets are its
parsimony—it is based on a small set of parameters, its
flexibility—it provides a theoretical framework that can
readily be extended and elaborated to incorporate
further or alternative search mechanism and its
mathematical tractability.

Keywords: guided search, computational modeling,
parallel versus serial search, sequential sampling, RT
distributions, salience, search termination
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Footnotes

1Note that it is also possible to implement imperfect
memory for visited locations (Horowitz & Wolfe,
2003), though this has not been made use of in the
present study.

2Fitting the model with uniform residual time, we
found that while the quantile-RT data fits were not
worse than those presented here, the more precise shape
of the RT densities exhibited some discrepancies from
the data (and relative to the shifted exponential
residuals). This was especially evident for the smaller
set sizes, for which the residual constitute a larger
component of the RT. We thus opted for the shifted
exponential residual times.

3We are grateful to Wolfe et al. (2010) for making
their data set publicly available.

4Repeating the simplex routine several times in-
creases the chances of escaping a local minimum
because the step size with which the parameter space is
sampled (the length of the edges of the simplex
polygon) is generally decreasing as the simplex routine
progresses. Rerunning the algorithm with the best-
fitting parameters from the previous run thus starts
with a larger step size.

5In Wolfe et al. (2010), the x-score transform is
referenced as ‘‘Palmer, Horowitz, & Wolfe, submitted,’’
because it was very similar to a prior method. The code
and details are available from E. Palmer (personal
communication: E. Palmer, Feb. 22, 2013). We apply
this method here in order to allow for a direct
comparison with Wolfe et al. (2010).

6The statistical test actually compared the logarithms
of the guidance parameters to zero. Logarithms were
taken so that the assumption of a symmetrical
distribution [for log(guidance)] would be plausible.

7However, recently, visual search data with briefly
presented inefficient search stimuli have been reported,
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which are more consistent with models assuming serial
shifts of attention than with a large class of single-stage
parallel search models (Palmer, Fencsik, Flusberg,
Horowitz, & Wolfe, 2011a).
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