
Supplementary materials: 

The color-diversity relation between the cued and of the non-cued rows: 

Over the course of Exp.1 the relation between color-diversity of the cued-row and non-cued rows 

was manipulated in the following manner (see also figure S1): in block-1 (the first 100 trials) 

both the cued and the non-cued rows had an identical color-diversity level ('congruent'). In the 

next 150 trials, the color-diversities were independent of each other ('orthogonal'). Over the next 

120 trials, the color-diversity levels were always opposite ('incongruent'). In block 2, (190 final 

trials of Exp.1) the color-diversities of the cued-row and the non-cued rows varied independently 

(as in the orthogonal trials). In all trials in Exp.2-6 the color-diversities were independent of each 

other (orthogonal). 

 

 

Figure S1:  The different trial-types in exp.1 and 2 

 

Dependent variable for letter-recall - WM-capacity: 

To calculate the amount of items maintained in participants' working memory, we corrected 

participants' accuracy in the letter-report task for guessing responses in the following manner:  
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Where N is the number of presented items (in our design - 6 letters), C is the number of response 

alternatives (9) and A is the observed accuracy. We assume that subjects remember  out of  

letters and guess the rest ( .  Each correct response contributes to the total accuracy.  

If subjects remember a letter, the probability of a correct response will be ; if they guess 

between  alternatives, the probability of it being a correct guess   The expected accuracy  

is therefore given by: 

 

 

 

The colors used: 

We used 19 possible colors – pink, violetred, orchid, mediumorchid, purple, slateblue, blue, 

royalblue, steelblue, turquoise, spring-green, green, olive-drab, yellow, gold, orange, sienna, 

orange-red and red. 

 

 

Exp.3 (N=9) Method: 

We used 6 random hues (ranging the entire color wheel) for creating the low-diversity condition 

and introduced colorless catch-trials (Fig. S2). 

 

DOI: 10.1177/0956797614532656

DS2



 

Figure S2. Low (top left panel) and high (top right) 'complexity' levels; below: a sample of a 

'catch' trail  

 

Exp.4 (N=6) Method: 

Experiment-4 was identical to Experiment-2 except that on each trial, immediately at the offset 

of the letter-array, 300ms Mondrian-masks (3X100ms) were presented (i.e., no blank interval 

between the letter array and the mask; see Fig. S3). Following the mask, participant either 

reported only the cued letter (block 1) or also made color-diversity judgment (block 2).  
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Figure S3. Time line illustration of a single trial in Exp.4 

 

Exp.6 (N=13) Method:  

Experiment-6 was identical to Experiment-5 except that the letter-array was presented for 10 ms 

(instead of 16.7 ms) and the ISIs were either 0, 10, 20, 30 or 40 ms. Instead of displaying low or 

high color-diversity, we used red and blue colored letters and tested the ability to detect the 

dominant color (16/24 of letters were either blue or red randomly between trials; Fig.S4).  
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Figure S4. Time-line illustration of a ‘blue' trial in Exp.6 

 

 

WMC results: 

WMC was not affected by the color-diversity relations between the cued and the non-cued rows 

(Exp.1; WMC_congruent=3; WMC_orthogonal=3.2; WMC_incongruent=3.1; WM_non-

cued=3.2; repeated measures ANOVA F(3,30)=0.44; p =0.73; see figure S5). 
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Figure S5 - WMC between the different diversity relations when participants had to estimate the 

cued row’s diversity level. Error bars denote 1 SEM. 

 

Likewise, WMC did not vary between congruent and incongruent trials when participants 

estimated the color-diversity level of the non-cued rows [Exp.1: WMC_Cong=3.23; 

WMC_Incong=3.09; t(11)=1.32 ; p=0.22. Exp.2: WMC_Cong=3.04; WMC_Incong=3.12; 

t(11)=-0.71; p=0.5]. In addition, WMC did not differ between letter-only trials and color-

diversity trials in Exp.3 and 4 [Exp.3: WMC_Letters=2.06; WMC_Diversity=2.23; t(8)=-1.3; 

p=0.23; Exp.4: WMC_Letters=2.11; WMC_ Diversity =2.17; t(5)=-0.3; p=0.78]. 

 

Color-diversity sensitivity:  

Participants exhibited above-chance sensitivity to the color-diversity of the non-cued rows 

[Exp.2: M_Accuracy=65%; t(8)=5.48, as compared to chance; p=0.0006; see figure S6; Exp.3: 

M_Accuracy=61%; t(8)=4.3, as compared to chance; p=0.003: Exp.4: M_Accuracy=63%; 

t(5)=2.82, compared to 50%; p=0.04]. 
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Figure S6 – Color-diversity accuracy in exp.2; Error bars denote 1 SEM. 

 

Sensitivity to catch-trials in Exp. 3 

Overall, 56 of the 90 catch trials (10 trials per subject) were correctly identified as such 

[M_Catch=62%; t(8)=3.98, as compared to 0; p=0.004; no false alarms]. 

 

Exp.6 Results: 

We employed the exact analysis as in Exp.5 and observed above-chance performance when 

participants reported no conscious experience of the colors [M_Accuracy=54.9%; t(12)=-3.16, as 

compared to 50%; p=0.009]. Likewise above-chance performance was observed specifically in 

the unseen trials under the 20 ms ISI [M_Accuracy=62.93%; t(12)=5.75, as compared to 50%; 

p<0.001; see Fig S.7]. 
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Figure S7. Unconscious color-processing in Exp.6; accuracy per visibility rating (left) and 

accuracy per visibility-rating, specifically in the ISI=20ms trials; dashed line indicates chance 

performance and Error bars denote 1 SEM.   

 

 

Simulation study: discrimination of average-color and color-diversity, as a function of the 

items’ color distinctiveness. 

 

Simulation-1. Conceptual/abstract model 

We carried out a simulation model to test whether an accurate color-diversity computation is, in 

principle, possible on the basis of highly degraded color representations of the individual letters. 

In other words, we are asking if it is possible to compute color-diversity to the degree needed for 

carrying out the high/low color-diversity task, without having perceived the individual colors. 

We operationalize low color-perception as involving a blurry or noisy representation of the 

individual colors. We expected that while averaging across color-elements via a population code 

would result in a robust estimation of the actual average color (since the noise at the specific 

elements would average out), the estimation of the color-diversity would not be robust to noise.  
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To show this, we simulated 1000 trials (500 of high-diversity and 500 of low-diversity), whereby 

on each trial 18 colors (corresponding to the amount of non-cued letters in our experiments) were 

generated by sampling each color either from the whole range of 21 colors (high diversity), or 

from a restricted range of 7 adjacent colors (low diversity). For simplicity we assume here that 

each color is represented by a numerical value from 1-21 (this ignores the cyclic nature of our 

color space, but the results are unaffected by this). To “manipulate” low (or blurry) color-

perception, we perturbed each color sample, by adding to it with a Gaussian variable (this may 

correspond to the ‘winning’ noisy color filter that responds best to the specific color; see 

Simulation-2 for an demonstration of this mechanism). For each level of the noise parameter (the 

standard deviation of the Gaussian bell), we calculated 3 measurements:  

i) the accuracy in identifying the color of a single-item – this was strongly affected by noise, as 

per the assumption (Fig. S5, cyan line). 

ii) the accuracy in identifying the average color of the entire display – this was expected to be 

noise-robust, as confirmed by the simulation result (Fig. S5, red line). 

iii) the accuracy in estimating the color diversity in the display – whose degree of robustness is 

under question. Does color-diversity behave more like the cyan or the red line, above? The 

results clearly confirm our expectation: unlike the average color, the color-diversity is not robust 

to noise/perceptual degradation (Fig S5, blue line). 

DOI: 10.1177/0956797614532656

DS9



 

Figure S7 – a simulation-based analysis of accuracy in estimating the color of a single item 

(cyan), of the items’ average color (red) and of items’ color diversity (blue) as a function of 

perceptual noise. The single-item accuracy was calculated as the fraction of trials in which the 

single item’s perturbed color was in a +/- 5 adjacent colors range (half of the entire range) as 

compared to the actual single-items’ color. The accuracy of average-color was calculated as the 

fraction of trials in which the average of the 18 perturbed colors was in a +/- 5 adjacent colors 

range as compared to the actual 18-item color-average. The precision range (-5,5) was chosen 

to obtain a binary decision (with same chance-level baseline) as for the color-diversity 

estimation. The simulated color-diversity estimation was computed by comparing the SD of the 

values of the 18 samples, with the mean of that SD across all the 1000 trials (including both 

high/low diversities). Note that this is an ideal observer analysis. 

 

Simulation-2: a neural coding model 
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We ran a second simulation to demonstrate the sensitivity of color-diversity estimation to 

degradation in the colors’ representation, within a neural coding model. For each letter, we 

represent the color with a population of 24 color-units, that optimally tuned to colors around the 

color-circle (Fig. 1A), at a resolution of 15 deg (360/24). Each detector has a Gaussian tuning on 

the circular/periodic space, whose SD corresponds to the degree of color degradation (sharp vs. 

blurred; see Fig.S6). 

 

 

Figure S8 - periodic color-tuning-curves of colors 1, 10 and 21 for low perceptual noise (SD=3; 

filled lines) and high perceptual noise (SD=8; dashed lines). The tuning curves are normalized 

to 1.  
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Upon the presentation of a specific color, all 24 detectors at that locations respond 

probabilistically, by triggering a number of spikes, that distributed according to a Poisson 

statistics with a rate, lambda, proportional to the tuning-curve above. In this simulation the 

proportionality constant is 100. 

f (k;λ)= Pr( X=k)= e− λ λk

k!  

Thus, for each ‘presented’ item, we obtained a noisy ‘activation profile’ of the entire population. 

We then generated 10000 trials, where on each trial 18 colors were sampled either from 24 color 

possibilities (high diversity), or from 8 possibilities (low diversity). We simulated for each trial, 

the populations’ activity in response to each of the 18 colors presented.  For each presented 

color, the detector with the maximum activity was chosen as the ‘perceived’ item – the best 

guess.  We illustrate this in Fig. S7, which shows a histogram for the best guess to 10,000 trials 

in which color-7 was presented for two level of degradation: moderate and high.  
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Figure S9 - Simulation-2: histograms for the best guess across 10,000 trials in which color-7 

was presented for two level of degradation: moderate (SD=3; blue) and high (SD=8; pink) 

We next compute, as in Simulation-1, the accuracy in I) single-color discrimination, ii) the 

accuracy in average color discrimination, iii) the color-diversity accuracy. The resolution was 

chosen to have all 3 measures have the same chance-level.  

Specially, to determine single-item accuracy, we chose one of the presented items and calculated 

the fraction of trials in which the detector with the maximum activity in the population did not 

differ in more than 90 from the actual selected color. In order to determine average-color 

accuracy, we first calculated, for each trial, the absolute (circular) distances between each of the 

‘perceived’ colors (the maximal activity detector, per single-item) and the actual item-color. 

Average-color accuracy was calculated as the fraction of trials in which the average absolute 

distance was below 90. Finally, in order to calculate color -diversity accuracy, we first 

calculated, for each simulated trial, the sum of all the absolute (circular) distances described 

above, and calculated the fraction of trials in which the trial-specific sum was below the overall 
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mean of sums across trials. Again we use the ideal observer assumptions. The results are shown 

in Figure S8, and are consistent with the ones obtained in the conceptual model. 
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Figure S10 – Simulation-2 results of accuracy as a function of perceptual noise in single-item 

color estimation (cyan), average-color estimation (red) and color-diversity estimation (blue); the 

noise parameter is the 0.5 STD of the Gaussian tuning curves 

 

Taken together, these computational studies suggest that much like the identification of a single 
items’ color and unlike the estimations of the average-color, above-chance estimations of color-
diversity must rely on a relatively high ratio of signal to noise at the perceptual level. 
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