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Visual attention modulates the integration of
goal-relevant evidence and not value
Pradyumna Sepulveda1, Marius Usher2, Ned Davies1, Amy Benson1, Pietro Ortoleva3 and
Benedetto De Martino1,4

Abstract
When choosing between options, such as food items presented in plain view, people tend to
choose the option they spend longer looking at. The prevailing interpretation is that visual
attention increases value. However, in previous studies, ‘value’ was coupled to a behavioural
goal, since subjects had to choose the item they preferred. This makes it impossible to discern
if visual attention has an effect on value, or, instead, if attention modulates the information most
relevant for the goal of the decision-maker. Here we present the results of two independent
studies—a perceptual and a value-based task—that allow us to decouple value from goal-
relevant information using specific task-framing. Combining psychophysics with computational
modelling, we show that, contrary to the current interpretation, attention does not boost value,
but instead it modulates goal-relevant information. This work provides a novel and more
general mechanism by which attention interacts with choice.
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1. Introduction23

How is value constructed and what is the role played by visual attention in choice? Despite their centrality24

to the understanding of human decision-making, these remain unanswered questions. Attention is thought25

to play a central role, prioritising and enhancing which information is accessed during the decision-26

making process. How attention interacts with value-based choice has been investigated in psychology27

and neuroscience [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] and this question is at the core of the theory of rational28

inattention in economics [12, 13, 14, 15].29

In this context, robust empirical evidence has shown that people tend to look for longer at the options30

with higher values [16, 10, 6] and that they tend to choose the option they pay more visual attention to31

[1, 2, 7, 3, 11]. The most common interpretation is that attention is allocated to items based on their value32

and that looking or attending to an option boosts its value, either by amplifying it [1, 2, 17] or by shifting it33

upwards by a constant amount [3]. This intuition has been elegantly formalized using models of sequential34

sampling, in particular the attentional drift diffusion model (aDDM), which considers that visual attention35

boosts the drift rate of the stochastic accumulation processes [1]. More recently this same model has been36

also used to study the role of attention in the accumulation of perceptual information [8]. These lines of37

investigation have been extremely fruitful, as they have provided an elegant algorithmic description of the38

interplay between attention and choice.39

As consequence of this development, the predominant assumption in the field of neuroeconomics has40

become that attention operates over the value of the alternatives [17]. However, this view overlooks the41

fact that in the majority of these studies, value is coupled to the agents’ behavioural goal, i.e. participants42

had to choose the item they found more rewarding. However, some recent studies have called into question43

this assumption and have hinted towards a flexible role of attention on sampling goal-relevant options44

([18],[9]). Even further, recent developments have shown that the ‘value networks’ in the brain could be45

tracking not purely reward value, but actually goal-congruent information ([19, 20]). Considering all this,46

our study aims to understand in more detail the role of goals on visual attention during both value-based47

and perceptual decisions: we aim to test the hypothesis that attention acts in a flexible way upon the48

accumulation of goal-relevant information and to examine the effects on the mechanism of preference49

formation and confidence.50

Our experimental design decouples reward value from choice by means of a simple task-framing51

manipulation. In the main eye-tracking part of our value-based experiment, participants were asked to52

choose between different pairs of snacks. We used two frame manipulations: like and dislike. In the53

like frame, they had to indicate which snack they would like to consume at the end of the experiment;54

this is consistent with the standard tasks used in value-based decision studies. But in the dislike frame,55

subjects had to indicate the snack that they would prefer not to eat, equivalent to choosing the other option.56

Crucially, in the latter frame value is distinct from the behavioural goal of which item to select. In fact, in57

the dislike frame participants need to consider the “anti-value” of the item to choose the one to reject.58

To anticipate our results, in the like frame condition we replicated the typical gaze-boosting effect:59

participants looked for longer at the item they were about to choose – the item they deemed most valuable.60

In the dislike frame, however, participants looked for longer at the item that they then chose to eliminate,61

i.e., the least valuable item. This means that agents paid more attention to the option they selected in the62

task, not to the option to which they deemed more valuable or wanted to consume. This suggests that63

attention does not boost value but rather is used to gather task-relevant information.64

In order to understand the mechanism via which attention interacts with value in both framings, we use65

a dynamic accumulation model, which allows us to account for the preference formation process and its66

dependency on task variables (values of the options). We also show how goal-relevance shapes confidence67
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and how confidence interacts with attention.68

To test the generality of our findings we also conducted a new perceptual decision-making experiment69

and tested a new set of participants. In this perceptual task, participants were asked to choose between two70

circles filled with dots. In some blocks they had to indicate the circle with more dots – most frame; in71

others, the circle with fewer dots – fewest frame. In this second study we replicated all the effects of the72

first, value-based one, corroborating the hypothesis of a domain-general role for attention in modulating73

goal-relevant information that drives choice.74

This work questions the dominant view in neuroeconomics about the relationship between attention and75

value, showing that attention does not boost value per se but instead modulates goal-relevant information.76

We conclude our work by presenting an economic model of optimal evidence accumulation. Using77

this model, we suggest that the behavioural strategy we observe in our experiment may be the result of78

deploying, in the context of binary choice, a behavioural strategy that is optimal when agents face more79

natural larger sets of options.80

2. Results81

In our first experiment, hungry participants (n=31) made binary choices between snacks in one of two task-82

frames, like and dislike. In the like frame, participants had to report the item they would prefer to eat; in the83

dislike frame, they chose the item they wanted to avoid eating (Figure 1A). After each choice, participants84

reported their confidence in having made a good choice [21, 7]. At the beginning of the experiment,85

participants reported the subjective value of individual items using a standard incentive-compatible BDM86

(see Methods).87

Our second experiment was done to test whether the results observed in value-based decisions could be88

generalised to perceptual decisions. A different group of participants (n=32) made binary choices between89

two circles containing a variable number of dots (Figure 1D). In the most frame, participants reported the90

circle containing the higher number of dots; in the fewest frame, the one with the lower. As in the Value91

Experiment, at the end of each trial participants reported their confidence in their choice.92

2.1 The effect of attention on choice93

Value Experiment. Our results confirmed that participants understood the task and chose higher value items94

in the like frame and lower value items in the dislike frame (Figure 1B,C). This effect was modulated by95

confidence(Figure 1B) similarly to previous studies [21, 7, 22]. For a direct comparison of the differences96

between the goal manipulations in the two tasks (Value and Perceptual) see Appendix 1 (Appendix 197

Figure 1).98

We then tested how attention interacts with choice by examining the eye-tracking variables. Our99

frame manipulation, which orthogonalised choice and valuation, allowed us to distinguish between two100

competing hypotheses. The first hypothesis, currently dominant in the field, is that visual attention is101

always attracted to high values items and that it facilitates their choice. The alternative hypothesis is that102

the attention is attracted to items whose value matches the goal of the task. These two hypotheses make103

starkly different experimental predictions in our task. According to the first, gaze will mostly be allocated104

to the more valuable item independently of the frame. The second hypothesis instead predicts that in the105

like frame participants will look more at the more valuable item, while this pattern would reverse in the106

dislike frame, with attention mostly allocated to the least valuable item. In other words, according to this107

second hypothesis, visual attention should predict choice (and the match between value and goal) and not108

value, independently of the frame manipulation.109

Our data strongly supported the second hypothesis since we found participants preferentially gaze110



Visual attention modulates the integration of goal-relevant evidence and not value — 4/27

Figure 1. Task and behavioural results. Value-based decision task (A): participants choose between two
food items presented in an eye-contingent way. Before the choice stage, participants reported the amount
of money they were willing to bid to eat that snack. In the like frame (top) participants select the item
they want to consume at the end of the experiment. In the dislike frame (bottom) participants choose
the opposite, the item they would prefer to avoid. After each choice participants reported their level of
confidence. (B) After a median split for choice confidence, a logistic regression was calculated for the
probability of choosing the right-hand item depending on the difference in value (ValueRight– ValueLeft) for
like (top) and dislike (bottom) framing conditions. The logistic curve calculated from the high confidence
trials is steeper, indicating an increase in accuracy. (C) Slope of logistic regressions predicting choice
for each participant, depending on the frame. The shift in sign of the slope indicates that participants are
correctly modifying their choices depending on the frame. Perceptual decision task (D): participants have
to choose between two circles containing dots, also presented eye-contingently. In the most frame (top)
participants select the circle with more white dots. In the fewest frame (bottom) they choose the circle
with the lower number of white dots. Distractor dots (orange) are included in both frames to increase the
difficulty of the task. Confidence is reported at the end of each choice. We obtained a similar pattern of
results to the one observed in the Value Experiments in terms of probability of choice (E) and the flip in
the slope of the choice logistic model between most and fewest frames (F).

(Figure 2A) the higher value option during like (t(30)=7.56, p<0.001) and the lower value option during111

dislike frame (t(30)=-4.99, p<0.001). From a hierarchical logistic regression analysis predicting choice112

(Figure 2B), the difference between the time participants spent observing the right over left item (∆DT)113

was a positive predictor of choice both in like (z=6.448, p<0.001) and dislike (z=6.750, p<0.001) frames.114

This means that participants looked for longer at the item that better fits the frame and not at the item with115
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the highest value. Notably, the magnitude of this effect was slightly lower in the dislike case (t(30)=2.31,116

p<0.05). In Figure 2B are also plotted the predictors of the other variables on choice from the best fitting117

model.118

Perceptual Experiment. We then analysed the effect of attention on choice in the perceptual case to119

test the generality of our findings. As in the Value Experiment, our data confirmed that participants did120

not have issues in choosing the circle with more dots in the most frame and the one with least amount121

dots in the fewest frame (Figure 1D,F). Furthermore, as in the Value Experiment and many other previous122

findings [21, 7], confidence modulated the accuracy of their decisions (Figure 1E). Critically for our123

main hypothesis, we found that participants’ gaze was preferentially allocated to the relevant option in124

each frame (Figure 2C): they spent more time observing the circle with more dots during most frame125

(t(31)=13.85, p<0.001) and the one with less dots during fewest frame (t(31)=-10.88, p<0.001). ∆DT was126

a positive predictor of choice (Figure 2D) in most (z=10.249, p<0.001), and fewest (z=10.449, p<0.001)127

frames. Contrary to the results in the Value Experiment in which the effect of ∆DT on choice was128

slightly more marked in the like condition (Figure 2B), in the Perceptual Study the effect of ∆DT was the129

opposite: ∆DT had a higher effect in the fewest frame (∆DTMost-Few: t(31)=-2.17, p<0.05)(Figure 2D).130

However, and most importantly, in both studies ∆DT was a robust positive predictor of choice in both131

frame manipulations. To summarise, these results show that in the context of a simple perceptual task,132

visual attention also has a specific effect in modulating information processing in a goal-directed manner:133

subjects spend more time fixating the option they will select, not necessarily the option with the highest134

number of dots.135

In both, Value and Perceptual Experiments, the most parsimonious models were reported in the136

manuscript and in Figure 2B and 2D. For a full model comparison see Appendix 2 Figure 1 and Appendix137

2 Table 1. More details on the choice models are reported in the Appendix 2.138

2.2 Fixations effects in choice139

An important prediction of attentional accumulation models is that the chosen item is generally fixated last140

(unless that item is much worse than the other alternative), with the magnitude of this effect related to the141

difference in value between the alternatives. This feature of the decision has been consistently replicated142

in various previous studies [1, 2, 23]. We therefore tested how the last fixation was modulated by the143

frame manipulation.144

Value Experiment. In the Value Experiment in both frames we replicated the last fixation effect and its145

modulation by value difference between the last fixated option and the other one (Figure 3A). In the like146

frame, the probability of choosing the last item fixated upon increases when the value of the last item is147

higher, as is shown by the positive sign of the slope of the logistic curve (mean β Like=0.922). Crucially,148

during the dislike frame the opposite effect was found: the probability of choosing the last seen option149

increases when the value of the non-chosen item is higher, seen from the negative slope of the curve (mean150

β Dislike=-0.951; ∆β Like-Dislike: t(30)=7.963, p<0.001).151

Perceptual Experiment. We observed the same pattern of results that in the Value Experiment (Figure152

3B). In the most frame, it was more probable that the last fixation was on the chosen item when the fixated153

circle had a higher number of dots (mean β Most=1.581). In the fewest frame, the effect flipped: it was154

more likely that the last circle seen was chosen when it had fewer dots (mean β Few = -0.944; ∆β Most-Few:155

t(31)=3.727, p<0.001).156

The previous set of analysis shows that the last fixation is modulated by the difference in evidence157

according to the goal that the participant is set to achieve. However, since the last fixation is in general158

followed by the participant response, one could suspect that the goal-dependent modulation of attention159

(i.e. ∆DT) we identified in our choice regression analysis (Figure 2) is entirely driven by the final fixation.160
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Figure 2. Attention and choice in Value and Perceptual Experiments. (A) Gaze allocation time depends
on the frame: while visual fixations in the like frame go preferentially to the item with higher value (top),
during the dislike frame participants look for longer at the item with lower value (bottom). Dots in the bar
plot indicate participants’ average gaze time across trials for high and low value items. Time is expressed
as the percentage of trial time spent looking at the item. Similar results were found for gaze distribution in
the Perceptual Experiment (C): participants gaze the circle with higher number of dots in most frame and
the circle with lower number of dots in fewest frame. Hierarchical logistic modelling of choice (probability
of choosing right item) in Value (B) and Perceptual (D) Experiments, shows that participants looked for
longer (∆DT) at the item they chose in both frames. All predictors are z-scored at the participant level. In
both regression plots, bars depict the fixed-effects and dots the mixed-effects of the regression. Error bars
show the 95% confidence interval for the fixed effect. In Value Experiment: ∆Value: difference in value
between the two items (ValueRight– ValueLeft); RT: reaction time; ΣValue: summed value of both items;
∆DT: difference in dwell time (DTRight– DTLeft); Conf: confidence. In Perceptual Experiment: ∆Dots:
difference in dots between the two circles (DotsRight– DotsLeft); ΣDots: summed number of dots between
both circles. ***: p<0.001, **: p<0.01, *: p<0.05.

This would be problematic since one would have similar results to the one presented in Figure 2 even if161

participants’ pattern of attention is not modulated by the goal (i.e. attention is directed in both frames to162

the most valuable item) or even if the pattern of fixation, before the last fixation, is random. To control for163

this possibility we performed a series of further analyses:164

First of all we repeated the analysis presented in section 2.1 (hierarchical choice regression – Figure165

2), removing the last two fixations when calculating the ∆DT. Note that we removed the last two fixations166

and not just the last one to avoid statistical artefacts (i.e. since the final fixation is mostly directed towards167
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the chosen item there would be an increased probability that second to last fixation is on the unchosen168

item). In Appendix 2 Figure 3, we show that once removed the last two fixations the pattern of results is169

unchanged.170

Secondly, we specifically investigated the middle fixations. Previous studies [1, 2, 8] have reported171

that middle fixations duration increases when the difference in value ratings (or perceptual evidence) of the172

fixated minus unfixated item increases. We replicated this result for our like and most frames but critically173

the effect was reversed in dislike and fewest frames (i.e. middle fixations durations decreased when the174

relative value of the fixated item was higher). The results suggesting that the goal-relevant modulation of175

attention affects also the middle fixations are presented in the Appendix 3 Figure 4.176

Finally, we investigated in more detail how the relation between attentional allocation and difference177

in value or perceptual evidence changed over time in the context of the goal manipulation. We calculated178

the Pearson correlation between fixation position (0: left, 1:right) and the difference in evidence (i.e.179

∆Value or ∆Dots, in both cases right – left item) at different time points (Figure 3C). We observed that180

after an initial phase in which there was no clear gaze preference for any of the items (note that given the181

gaze-contingent design participants must explore both alternatives), fixations were correlated with the182

frame-relevant item: during like frame, fixations positions were positively correlated with ∆Value, i.e. the183

fixations were directed towards the item with higher value; during dislike frame the behaviour was the184

opposite: fixations were negatively correlated with ∆Value, indicating a preference for the option with185

lower value. Note that these results are in line with the ones reported by Kovach and colleagues [18]. We186

see a very similar pattern of results in the Perceptual Experiment too (Figure 3D).187

2.3 Which factors determine confidence?188

Value Experiment. To explore the effect that behavioural factors had over confidence, we fitted a hierarchi-189

cal linear model (Figure 4A). As it was the case for the results presented above for the choice regression,190

the results for the confidence regression in the like frame replicated all the effects reported in a previous191

study from our lab [7]. Again, we presented here the most parsimonious model (Appendix 4 Figure 1192

and Appendix 4 Table 1 for model comparison). We found that the magnitude of ∆Value (|∆Value|) had193

a positive influence on confidence in like (z=5.465, p<0.001) and dislike (z=6.300, p<0.001) frames,194

indicating that participants reported higher confidence when the items have a larger difference in value;195

this effect was larger in the dislike frame (t(30) =-4.72, p<0.01). Reaction time (RT) had a negative effect196

on confidence in like (z=-6.373, p<0.001) and dislike (z=-7.739, p<0.001) frames, i.e., confidence was197

lower when the RTs were longer. Additionally, we found that, in both conditions, higher number of gaze198

switches (i.e., gaze shift frequency, GSF) predicted lower values of confidence in like (z=-2.365, p<0.05)199

and dislike (z=-2.589, p<0.05) frames, as reported in Folke et al. [7].200

We then looked at the effect of the summed value of both options, ΣValue, on confidence. As in Folke201

et al. [7] we found a positive effect of ΣValue on confidence in the like frame (z=3.206, p<0.01); that202

is, participants reported a higher confidence level when both options were high in value. Interestingly,203

this effect was inverted in the dislike frame (z=-4.492, p<0.001), with a significant difference between204

the two frames (t(30)=9.91, p<0.001) This means that, contrary to what happened in the like frame in205

which confidence was boosted when both items had high value, in the dislike frame confidence increased206

when both items had low value. This novel finding reveals that the change in context also generates207

a reassessment of the evidence used to generate the confidence reports; that is, confidence also tracks208

goal-relevant information.209

Perceptual Experiment. We repeated the same regression analysis in the perceptual decision experiment,210

replacing value evidence input with perceptual evidence (i.e., absolute difference in the number of dots,211

|∆Dots|). We directly replicated all the results of the Value Experiment, generalising the effects we212
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Figure 3. Fixation effects on the chosen item. Last fixation effects: (A) in the Value Experiment, a logistic
regression was calculated for the probability the last fixation is on the chosen items (P(LastFix = Chosen))
depending on the difference in value of the item last fixated upon and the alternative item. As reported in
previous studies, in like frame, we find it is more probable that the item last fixated upon will be chosen
when the value of that item is relatively higher. In line with the hypothesis that goal-relevant evidence, and
not value, is being integrated to make the decision, during the dislike frame the effect shows the opposite
pattern: P(LastFix = Chosen) is higher when the value of the item last fixated on is lower, i.e., the item
fixated on is more relevant given the frame. (B) A similar analysis in the Perceptual Experiment mirrors the
results in the Value Experiment with a flip in the effect between most and fewest frames. Lines represent
the model predictions and dots are the data binned across all participants. ∆Value and ∆Dots measures are
z-scored at the participant level. Gaze preference in time: (C) Pearson correlation between gaze position
and difference in value (∆Value) was calculated for each time point during the first 2s of the trials. In
the Value Experiment, after an initial phase of random exploration, fixations are positively correlated
with the high value item in like frame, while this effect is the opposite for dislike frame, i.e. fixations
are directed to the low value item. (D) In the Perceptual Experiment, a similar pattern of goal-relevant
fixations emerges. Lines in both figures correspond to the time point correlation considering all trials
and participants. Shaded area corresponds to the standard error. Black line indicates time points with
statistically significant difference between frames, resulting from a permutation test (P-value <0.01 for at
least 6 time bins, 60 ms). Correction for multiple comparison was performed using FDR, α ≤ 0.01.

isolated to the perceptual realm (Figure 4B). Specifically, we found that |∆Dots| had a positive influence on213

confidence in most (z=3.546, p<0.001) and fewest frames (z=7.571, p<0.001), indicating that participants214
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reported higher confidence when the evidence was stronger. The effect of absolute evidence |∆Dots|215

on confidence was bigger in the fewest frame (t(31)=-4.716, p<0.001). RT had a negative effect over216

confidence in most (z=-7.599, p<0.001) and fewest frames (z=-5.51, p<0.001), i.e., faster trials were217

associated with higher confidence. We also found that GSF predicted lower values of confidence in most218

(z=-4.354, p<0.001) and fewest (z=-5.204, p<0.001) frames. Critically (like in the Value Experiment),219

the effect of the sum of evidence (ΣDots) on confidence also changes sign depending on the frame.220

While ΣDots had a positive effect over confidence in the most frame (z=2.061, p<0.05), this effect is the221

opposite in the fewest frame (z=-7.135, p<0.001), with a significant difference between the parameters in222

both frames (t(31)=14.621, p<0.001). The magnitude of ΣDots effect was stronger in the fewest frame223

(t(31)=-10.438, p<0.001). For further details on the confidence models see the Appendix 4.224

2.4 Attentional model: GLAM225

To gain further insights into the dynamic of the information accumulation process we modelled the data226

from both experiments adapting a Gaze-weighted Linear Accumulator Model (GLAM) recently developed227

by Thomas and colleagues [11]. The GLAM belongs to the family of race models and approximates the228

aDDM model [1, 2] in which the dynamic aspect is discarded, favouring a more efficient estimation of229

the parameters. This model was chosen since, unlike the aDDM, it allowed us to test the prediction of230

the confidence measures as balance of evidence [24, 25, 21]. Crucially, in both experiments we used231

goal-relevant evidence (not the value or the number of dots) to fit the models in the dislike and fewest232

frames (for further details see the Methods Attentional Model: Glam section).233

2.4.1 Parameter fit and simulation234

Value Experiment. The simulations estimated with the parameters fitted for like and dislike frames data235

(even-trials) reproduced the behaviour observed in the data not used to fit the model (odd- trials). In both236

like and dislike frames, the model replicated the observed decrease of RT when |∆Value| is high, i.e., the237

increase in speed of response in easier trials (bigger value difference). The RT simulated by the models238

significantly correlated with the RT values observed in participants odd-numbered trials (Like: r(29)=0.90,239

p<0.001; Dislike: r(29)=0.89, p<0.001) (Figure 5A). In the like frame, the model also correctly predicted240

a higher probability of choosing the right item when ∆Value is higher. In the dislike frame, the model241

captured the change in the task goal and predicted that the selection of the right item will occur when242

-∆Value is higher, i.e., when the value of the left item is higher. Overall, in both frames the observed and243

predicted probabilities of choosing the most valuable item were significantly correlated (Like: r(29)=0.80,244

p<0.001; Dislike: r(29)=0.79, p<0.001) (Figure 5B). See Appendix 5 Figure 4A and Appendix 5 Figure245

5A for further details.246

In both frames, the models also predicted choice depending on the difference in gaze (∆Gaze = gright247

- gleft), i.e., that the probability of choosing the right item increases when the time spent observing that248

item is higher. However, in this case, we cannot say if gaze allocation itself is predicting choice if we do249

not account for the effect of |∆Value|. To account for the relationship between choice and gaze we used a250

measure devised by Thomas et al. [11], ‘gaze influence’. Gaze influence is calculated taking the actual251

choice (1 or 0 for right or left choice, respectively) and subtracting the probability of choosing the right252

item given by a logistic regression for ∆Value calculated from actual behaviour. The averaged ‘residual’253

choice probability indicates the existence of a positive or negative gaze advantage. Then, we compared the254

gaze influence predicted by GLAM with the empirical one observed for each participant. As in Thomas et255

al. [11], most of the participants had a positive gaze influence and it was properly predicted by the model256

in both frames (Like: r(29)=0.68, p<0.001; Dislike: r(29)=0.63, p<0.001) (Figure 5C).257

Perceptual Experiment. As in the Value Experiment we fitted the GLAM to the data and we conducted258
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Figure 4. Hierarchical linear regression model to predict confidence. (A) In Value Experiment, a flip
in the effect of ΣValue over confidence in the dislike frame was found. (B) In Perceptual Experiment
a similar pattern was found in the effect of ΣDots over confidence in the fewest frame. The effect of
the other predictors on confidence in both experiments and frames coincides with previous reports [7].
All predictors are z-scored at the participant level. In both regression plots, bars depict the fixed-effects
and dots the mixed-effects of the regression. Error bars show the 95% confidence interval for the fixed
effect. In Value Experiment: ∆Value: difference in value between the two items (ValueRight– ValueLeft);
RT: reaction time; ΣValue: summed value of both items; ∆DT: difference in dwell time (DTRight– DTLeft);
GSF: gaze shift frequency; ∆DT: difference in dwell time. In Perceptual Experiment: ∆Dots: difference in
dots between the two circles (DotsRight– DotsLeft); ΣDots: summed number of dots between both circles.
***: p<0.001, **: p<0.01, *: p<0.05.

model simulations. Again, these simulations showed that we could recover most of the behavioural patterns259

observed in participants. We replicated the relationship between RT and |∆Dots| (Most: r(26)=0.97,260

p<0.001; Fewest: r(26)=0.98, p<0.001) (Figure 5D). As in the value-based experiment, the model also261

predicted a higher probability of choosing the right-hand item when ∆Dots is higher in the most frame and262

when -∆Dots is higher in the fewest frame. However, in the Perceptual Experiment, the simulated choices263



Visual attention modulates the integration of goal-relevant evidence and not value — 11/27

only in the fewest frame were significantly correlated with the observed data, although we observed a264

non-significant trend in the most frame (Most: r(26)=0.69, p<0.001; Fewest: r(26)=0.37, p=0.051) (Figure265

5E). In both frames, we observed that the model predicted that choice was linked to ∆Gaze and, as in the266

Value Experiment, we show that the gaze influence predicted by the model is indeed observed in the data267

(Most: r(26)=0.65, p<0.001; Fewest: r(26)=0.47, p<0.05) (Figure 5F). See Appendix 5 Figure 4B and268

Appendix 5 Figure 5B for further details.269

Results of the models fitted without accounting for the change in goal-relevant evidence provided a270

poor fit of the data, these results are presented in Appendix 5 Figures 1-3 and 6. For a direct comparison of271

the different GLAM parameters see Appendix 6. Additionally, we were able to mirror the results obtained272

with GLAM using aDDM [1, 8]. For dislike and fewest frames the best model was the one fitted using273

goal-relevant evidence (see Appendix 7 for details).274

2.4.2 Balance of Evidence and Confidence275

The GLAM belongs to the family of race models in which evidence is independently accumulated for each276

option. Therefore, using the GLAM we were able to adapt the model to estimate a measure of confidence277

in the decision that is defined by the balance of evidence [24, 26, 25, 21] allowing us to characterise the278

pattern of the confidence measures. Balance of evidence is defined as the absolute difference between the279

accumulators for each option at the moment of choice, which is when one of them reaches the decision280

threshold (i.e., ∆e = |Eright(tfinal) - Eleft(tfinal)|) (Figure 6A). To estimate ∆e we performed a large number281

of computer simulations using the fitted parameters for each participant in both experiments.282

Value Experiment. To confirm that the relationship between confidence and other experimental vari-283

ables was captured by the balance of evidence simulations, we constructed a linear regression model284

predicting ∆e as function of the values and the RTs obtained in the simulations (∆e∼ |∆Value| + simulated285

RT + ΣValue). We found that this model replicated the pattern of results we obtained experimentally286

(Figure 4). We then explored whether the model was able to recover the effect of ΣValue on confi-287

dence (Figure 6B). As we have shown when analysing confidence, ΣValue boosted ∆e in the like frame288

(β ΣValue=0.071, t(37196)=14.21, p<0.001) and reduced ∆e in the dislike frame (β ΣValue=-0.061, t(37196)=-289

12.07, p<0.001). The effect of ΣValue over confidence was replicated in the simulations with an increase290

of ∆e when high value options are available to choose (Appendix 8 Figure 1 and Appendix 8 Figure291

3A,D for more details). In the dislike frame the fitted model also replicated this pattern of behaviour,292

including the adaptation to context which predicts higher ∆e when both alternatives have low value. Inter-293

estingly, the replication of the effect for ΣValue over ∆e with GLAM did not hold when the gaze bias was294

taken out of the model in like (β ΣValue=-0.007, t(37196)=-1.495, p=0.13, ns) and dislike (β ΣValue=-0.002,295

t(37196)=-0.413, p=0.679, ns) frames (Figure 6B). We also found that the effect of |∆Value| on confidence296

was replicated by the simulated balance of evidence, increasing ∆e when the difference between item297

values is higher (i.e., participants and the model simulations are more “confident” when |∆Value| is higher)298

(Appendix 8 Figure 1).299

Perceptual Experiment. We conducted a set of similar analyses and model simulations in the Value300

Experiment (Figure 6C). We found that ΣDots boosted ∆e in the most frame (Most : β ΣDots=0.029,301

t(33596)=4.71, p<0.001) and reduces ∆e in the fewest frame (Fewest : β ΣDots=-0.088, t(33596)=-14.41,302

p<0.001) . As in the Value Experiment this effect disappeared when the gaze bias was taken out of303

the model (Most: β ΣDots=-0.0002, t(33596)=-0.04, p=0.96, ns; Fewest: β ΣDots=-0.006, t(33596)=-1.03,304

p=0.29, ns) (see Appendix 8 Figure 2 and Appendix 8 Figure 3B,E for more details).305

Overall, these results show how the model is capable of capturing the novel empirical effect on306

confidence we identified experimentally, giving computational support to the hypothesis that goal-relevant307

evidence is fed to second order processes like confidence. It also hints at a potential origin to the effects of308
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Figure 5. Individual out-of-sample GLAM predictions for behavioural measures in Value(A-C) and
Perceptual Experiments (D-F). In value-based decision, (A) the model predicts individuals mean RT; (B)
the probability of choosing the item with higher value in like frame, and the item with lower value in dislike
frame; and (C) the influence of gaze in choice probability. In the Perceptual Experiment, (D) the model also
predicts RT and (F) gaze influence. (E) The model significantly predicts the probability of choosing the
best alternative in the fewest frame only (in the most frame a trend was found). The results corresponding
to the models fitted with like/most frame data are presented in blue, and with dislike/fewest frame data in
red. Dots depict the average of observed and predicted measures for each participant. Lines depict the
slope of the correlation between observations and the predictions. Mean 95% confidence intervals are
represented by the shadowed region in blue or red, with full colour representing Value Experiment and
striped colour Perceptual Experiment. All model predictions are simulated using parameters estimated
from individual fits for even-numbered trials.

the sum of evidence (i.e., ΣValue, ΣDots) on confidence: asymmetries in the accumulation process, in309

particular the multiplicative effect of attention over accumulation of evidence, may enhance the differences310

between items that are more relevant for the frame. This consequentially boosts the level of confidence311

that participants have in their decisions.312

2.5 A Model of Optimal Information Acquisition313

We then sought to understand why participants systematically accumulated evidence depending on the task314

at hand, instead of first integrating evidence using a task-independent strategy and then emitting a response315

appropriate with the task. We reasoned that this may reflect a response in line with models of rational316

information acquisition popular in economics. These include models of so-called rational inattention,317
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Figure 6. Balance of evidence (∆e) simulated with GLAM reproduces ΣValue and ΣDots effects over
confidence. (A) GLAM is a linear stochastic race model in which two alternatives accumulate evidence
until a threshold is reached by one of them. ∆e has been proposed as a proxy for confidence and it captures
the difference in evidence available in both accumulators once the choice for that trial has been made.
(B) Using ∆e simulations we captured the flip of the effect of ΣValue over confidence between like and
dislike frames. ∆e simulations were calculated using the model with parameters fitted for each individual
participant. A pooled linear regression model was estimated to predict ∆e. The effects of ΣValue predicting
∆e are presented labelled as ’Model Sim’. A second set of simulations was generated using a model
in which no asymmetries in gaze allocation were considered (i.e., no attentional biases). This second
model was not capable of recovering ΣValue effect on ∆e and is labelled as ’Model Sim No Bias’. ΣValue
coefficients for a similar model using participants’ data predicting confidence are also presented labelled
as ‘Human’ for comparison. (C) A similar pattern of results is found in the Perceptual Experiment, with
the model including gaze bias being capable of recovering ΣDots effect on ∆e. This novel effect may
suggests that goal-relevant information is also influencing the generation of second-order processes, as
confidence. This effect may be originated by the attentional modulation of the accumulation dynamics.
Coloured bars show the parameter values for ΣValue and ΣDots and the error bars depict the standard
error. Solid colour indicates the Value Experiment and striped colours indicate the Perceptual Experiment.
All predictors are z-scored at participants level.

according to which agents are rationally choosing which information to acquire considering the task, the318

incentives, and the cost of acquiring and processing information [12, 13, 14, 15]. As opposed to DDM or319

GLAM, these models attempt to investigate not only what the consequences of information acquisition320

are, but also which information is acquired.321

In this model, we consider an agent facing n available options. Each item i has value vi to the agent,322

which is unknown, and agents have a prior such that values follow an independent, identical distribution;323

for simplicity, we assume it to be a Normal vi ∼ N(µ,σ2
µ). Agents can acquire information in the form324

of signals xi = vi + εi, with εi independently and identically distributed with εi ∼ N(0, σ2
ε ). They follow325
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Bayes’ rule in updating their beliefs after information. Once they finish acquiring information, they then326

choose the item with the highest expected value.327

Consider first the case in which an agent needs to pick the best item out of n possible ones. Suppose328

that she already received one signal for each item. Denote i1 the item for which the agent received the329

highest signal, which is also the item with the highest expected value; i2 the second highest, etc. (Because330

each of these is almost surely unique, let us for simplicity assume they are indeed unique.) The agent can331

acquire one additional signal about any of the available items or select any probability distribution over332

signals. The following proposition shows that it is (weakly) optimal for the agent to acquire a second333

signal about the item that is currently best, i.e., i1.334

Denote ∆ the set of all probability distributions over signals and V (i) the utility after acquiring a new335

signal xi,2 about item i, i.e.,336

V (i) := max
j∈1,...,n

E[v j|x1, ..,xN ,xi, 2] (1)

Proposition 1. The optimal strategy when choosing the best option is to acquire one more signal about337

item i1 or i2, i.e., either the item with the currently highest expected value or the one with second highest338

value. That is:339

E[V (i1)] = E[V (i2)]≥max
p∈∆

n

∑
i=1

p(i)V (i)

and E[V (i1)]> E[V (i j)] ∀ j 6= 1,2
(2)

This proposition shows that agents have asymmetric optimal sampling strategies: they are not indif-340

ferent between which item to sample, but rather want to acquire extra signals about items that current341

look best or second-best. (They are indifferent between the latter two.). When n > 2, these strategies are342

strictly better than acquiring signals about any other item.343

How would this change if agents need instead to pick which item to eliminate, assuming that she gets344

the average utility of the items she keeps? In this case, the expected utility after acquiring a new signal xi,2345

about item i, is:346

V̂ (i) := max
j∈1,...,n

E
[

∑i 6= j v j

n−1
|x1, ...,xN ,xi,2

]
, (3)

Then, it is optimal to receive an additional signal about the least valuable item in or the next one, in−1.347

Proposition 2. The optimal strategy when choosing which item to discard is to acquire one more348

signal about item in or in−1, i.e., either the one with the lowest or the one with the second lowest value.349

That is:350

E
[
V̂ (in)

]
= E

[
V̂ (in−1)

]
≥ max

p∈∆(S)

n

∑
i=1

p(i)V̂ (i)

and E
[
V̂ (in)

]
> E

[
V̂ (i j)

]
∀ j 6= n,n−1

(4)

For a full proof of both propositions see Appendix 9.351
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Again, agents have asymmetric optimal sampling strategies: but now, they want to sample the items352

that currently look worse again. The intuition behind both results is that when one has to choose the best353

item, it is more useful to acquire information that is likely to change the ranking at the top (i.e., between354

best or second best item) than information that changes the ranking at the bottom, since these items won’t355

be selected (e.g., 4th and 5th item). Crucially, the reverse is true when one is tasked to select which item to356

eliminate.357

This shows how in these simple tasks it is strictly more advantageous to acquire information in line358

with the current goal rather than adopting a goal-independent information-acquisition strategy.359

Our model suggests that in many ecological settings, in which there are more than two options, the360

optimal strategy involves acquiring asymmetric information depending on the goal. It is only when there361

are only two options that individuals are indifferent about which information to acquire. We propose362

that the asymmetric strategies we observe even in this latter case might be a consequence of the fact that363

individuals have developed a strategy that is optimal for the more frequent, real-life cases in which n > 2,364

and continue to implement this same asymmetric strategy to binary choices, where it remains optimal.365

3. Discussion366

In this study we investigated how framing affects the way in which information is acquired and integrated367

during value-based and perceptual choices. Here, using psychophysics together with computational and368

economic models we have been able to adjudicate between two contrasting hypotheses. The first one,369

currently the dominant one in the field of neuroeconomics, proposes that attention modulates (either by370

biasing or boosting) a value integration that starts at the beginning of the deliberation process. Subsequently,371

at the time of the decision, the participant would give the appropriate response (in our task accepting the372

option with the highest value or rejecting the one with lowest one) using the value estimate constructed373

during this deliberation phase. The second hypothesis suggests that, from the very start of the deliberation374

process, the task-frame (goal) influences the type of information that is integrated. In this second scenario,375

attention is not automatically attracted to high value items to facilitate their accumulation but has a more376

general role in prioritising the type of information that is useful for achieving the current behavioural goal.377

Importantly, these two hypotheses make very distinct predictions about the pattern of attention and suggest378

very different cognitive architecture underpinning the decision process.379

Our results favour the second hypothesis: specifically, we show that, in both perceptual and value-based380

tasks, attention is allocated depending on the behavioural goal of the task. While our study does not381

directly contradict previous findings [1, 2, 3, 17] it adds nuance to the view that this is a process specifically382

tied to value integration (defined as a hedonic or reward attribute). Our findings speak in favour of a383

more general role played by attention in prioritising the information needed to fulfil a behavioural goal in384

both value and perceptual choices ([27, 18, 9]). Importantly, the seeking of goal-relevant information is385

observed along the trial, opposing the assumption that attentional sampling is random except for the last386

fixation ([1, 2]; see [10, 6] for additional support for this idea). Pavlovian influences have been proposed387

to play a key role in the context of accept /reject framing manipulation [28, 29, 30, 31]. However, the fact388

that we found almost identical results in a follow-up perceptual study in which the choice was not framed389

in terms of ‘accept’ or ‘reject’ but using a different kind of instruction (i.e., “choose the option with fewer390

or more dots”) suggests that attention acts on a more fundamental mechanism of information processing391

that goes beyond simple Pavlovian influences.392

We also measured the trial-by-trial fluctuations in confidence to gain a deeper insight in the dynamics393

of this process. We found that the role of confidence goes beyond that of simply tracking the probability394

of an action being correct, as proposed in standard signal detection theory. Instead, it is also influenced by395
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the perceived sense of uncertainty in the evaluation process [32, 33], and contextual cues [34]. In turn,396

confidence influences future responses and information seeking [7, 35, 36, 37]. In previous work [7], we397

reported how, in value-based choice, confidence was related not only to the difference in value between398

the two items, but also to the summed value (∆Value and ΣValue using the current notation), and we found399

that that confidence was higher if both items have a high value [7]. Here we replicate this effect in both400

experiments in the like and most conditions. However, this effect flips in the dislike or fewest frame: in401

these cases, confidence increases when the summed value or number of dots is smaller. This result is402

particularly striking since the frame manipulation should be irrelevant for the purpose of the decision403

and has little effect on the objective performance. This suggests that similarly to attention, the sense of404

confidence is also shaped by the behavioural goal that participants are set to achieve.405

In both experiments, the incorporation of goal-relevant evidence to fit the GLAM resulted in a better406

model fit compared with the model in which the value or perceptual evidence was integrated independently407

of the frame. We then modified the GLAM to include a measure of confidence defined as balance of408

evidence (∆e) [24, 25, 21]. In doing so we confirm that our model can replicate all the main relations409

between confidence, choice and RT. We then tested if the model simulation was also recovering the flip410

in the relationship between confidence and summed evidence (ΣValue or ΣDots) triggered by the frame411

manipulation. We found the model captures this effect only if the attentional bias is included in the412

simulations. The boost in ∆e when goal-relevant evidence in both alternatives is high can attributed to413

the architecture of the model: gaze has a multiplicative effect over evidence accumulation. For example,414

consider a case with two items of value A1=2 and A2=1, and a discount factor for the unattended item415

u=0.3. Assuming the item with higher value is gazed more we could express, in a very simplified way, the416

∆e for this choice as ∆eA = A1-A2*u = 2-1*0.3 = 1.7. Consider now two new items with identical ∆Value417

but higher magnitude of the ΣValue, B1=10 and B2=9. Notice that since ∆Value is the same, this choice in418

absence of attentional effect should be considered of identical difficulty than in case A (A1-A2 = B1-B2 =419

1), and therefore the agent should be neither more, nor less confident. But, keeping the same attentional420

factors than for the first set, we have that the ∆e between the items increases, ∆eB = B1-B2*u = 10-9*0.3421

= 7.3 (∆eA<∆eB). This effect would not be observed if attention affected evidence accumulation in an422

additive way (A1-(A2-u) = B1-(B2-u)). Our empirical confidence data therefore provide further support423

to a multiplicative [17] instead of additive effect of attention into goal-relevant information. Overall,424

these data speak in favour of a coding scheme in which the goal sets, from the beginning of the task, the425

allocation of attention and, by doing so, influences first order processes such as choice, but also second426

order process such as confidence. Further empirical data will be required to test this idea more stringently.427

The idea that the goal of the task plays a central role in shaping value-based decisions should not428

be surprising. Indeed, value-based decision is often called goal-directed choice. Nevertheless, there has429

been a surprisingly little amount of experimental work in which the behavioural goal has been directly430

manipulated as the key experimental variable for studying the relation between attention and value.431

Notable exceptions are two recent studies from Frömer and colleagues [19] and Kovach and colleagues432

[18]. In the first study [19] participants were shown a set of four items and asked, in half of the trials,433

to determine the best item and, in the second half, the worst item. In line with our findings, they found434

that behaviour and neural activity in the ‘value network’, including vmPFC and striatum, was determined435

by goal-congruency and did not simply reflected the expected reward. In the second study, Kovach and436

colleagues [18] implemented a design similar to our value-based experiment in which participants were437

required to indicate the item to keep and the one to discard. They found, similarly to our findings in the438

value-based experiment, that the overall pattern of attention was mostly allocated according to the task439

goal. However, in the first few hundred milliseconds, these authors found that attention was directed more440

prominently to the most valuable item in both conditions. We did not replicate this last finding in our441
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experiment (see Figure 3C, 3D and Appendix 2 Figure 2, showing that fixations were randomly allocated442

during the early moments of the trial). One possible reason for this discrepancy is that the experiment by443

Kovach and colleagues presented both items on the screen at the beginning of the task – unlike in our task,444

in which the item was presented in a gaze-contingent way (to avoid processing in the visual periphery).445

This setting might have triggered an initial and transitory bottom-up attention grab from the most valuable446

(and often most salient) item before the accumulation process started.447

To gain a deeper insight into our findings we developed a normative model of optimal information448

acquisition rooted in economic decision theory. Our model shows that in many real-life scenarios in which449

the decision set is larger than two, the optimal strategy to gather and integrate information depends on the450

behavioural goal. Intuitively, this happens because new information is all the more useful the more likely it451

is to change the behavioural output, i.e., the choice. When the agent needs to select the best item in a set, it452

is best to search for evidence that it is more likely to affect the top of the ranking (e.g., is the best item still453

the best one?); information that changes the middle or the bottom of the ranking is instead less valuable454

(e.g., is the item ranked as seven is now ranked as six?) because it would not affect the behavioural output.455

When choosing which item to discard, instead, the optimal strategy involves acquiring information most456

informative of the bottom of the ranking and not the top. We propose that even in the context of binary457

choice studied here, humans might still deploy this normative strategy (for multi-alternative choice), and458

that while it does not provide a normative advantage, it is not suboptimal. Further work in which the size of459

the set is increased would be required to test this idea more stringently. Notably, two recent pre-prints have460

also introduced models to explain how the attentional patterns in choice are generated assuming optimal461

information sampling [38, 39]. Both models are based on Bayesian updates of value beliefs, with visual462

attention playing a role in selecting the information to sample. However, both studies were developed463

considering only a standard appetitive like frame (Krajbich et al. [1] study was used as benchmark in both464

cases).465

The most far reaching conclusion of our work is that context and behavioural demand have a powerful466

effect on how information is accumulated and processed. Notably, our data show that this is a general effect467

that spans both more complex value-based choice and simpler perceptual choice. Our conclusion is that,468

given the limited computational resources of the brain, humans have developed a mechanism that prioritises469

the processing or recollection of the information that is most relevant for the behavioural response that470

is required. This has profound implications when we think about the widespread effect of contextual471

information on decision making that has been at the core of the research in psychology, behavioural472

economics and more recently neuroeconomics [40, 41, 42, 28, 43]. Most of these contextual or framing473

effects have been labelled as “biases” because, once one strips away the context, the actual available474

options should remain identical. However, this perspective may not be putting enough emphasis on the fact475

that the decision maker has to construct low dimensional (and therefore imperfect) representations of the476

decision problem. As we have shown here, from the very beginning of the deliberation process, the context477

— even when it is simple (like/dislike, most/fewest) or irrelevant from the experimenter perspective —478

affects which information is processed, recalled, or attended to, with effects that spread into post-decision479

processing such as confidence estimation. This, as a consequence, will produce profoundly dissimilar480

representations according to the behavioural goal set by the context. With this shift of perspective, it may481

well be the case that many of the so-called “biases” will be shown in a new light, given that participants482

are dealing with very different choices once the behavioural goal changes. This viewpoint might provide a483

more encouraging picture of the human mind, by suggesting that evolution has equipped us well to deal484

with ever-changing environments in the face of limited computational resources.485
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4. Methods486

4.1 Procedure487

Value Experiment: At the beginning of this experiment, participants were asked to report on a scale from488

£0-3 the maximum they would be willing to pay for each of 60 snack food items. They were informed489

that this bid will give them the opportunity to purchase a snack at the end of the experiment, using the490

Becker-DeGroot-Marschak [44] mechanism, which gives them incentives to report their true valuation.491

Participants were asked to fast for four hours previous to the experiment, expecting they would be hungry492

and willing to spend money to buy a snack.493

After the bid process, participants completed the choice task: in each trial they were asked to choose494

between two snack items, displayed on-screen in equidistant boxes to the left and right of the centre of the495

screen (Figure 1A). After each binary choice, participants also rated their subjective level of confidence in496

their choice. Pairs were selected using the value ratings given in the bidding task: using a median split,497

each item was categorized as high- or low-value for the agent; these were then combined to produce 15498

high-value, 15 low-value, and 30 mixed pairs, for a total of 60 pairs tailored to the participant’s preferences.499

Each pair was presented twice, inverting the position to have a counterbalanced item presentation.500

The key aspect of our experimental setting is that all participants executed the choice process under501

two framing conditions: 1) a like frame, in which participants were asked to select the item that they liked502

the most, i.e., the snack that they would prefer to eat at the end of the experiment; and 2) a dislike frame in503

which participants were asked to select the item that they liked the least, knowing that this is tantamount504

to choosing the other item for consumption at the end of the experiment. See Figure 1A for a diagram of505

the task.506

After 4 practice trials, participants performed a total of 6 blocks of 40 trials (240 trials in total). Like507

and dislike frames were presented in alternate blocks and the order was counterbalanced across participants508

(120 trials per frame). An icon in the top-left corner of the screen (“thumbs up” for like and “stop sign” for509

dislike) reminded participants of the choice they were required to make; this was also announced by the510

investigator at the beginning of every block. The last pair in a block would not be first in the subsequent511

block.512

Participants’ eye movements were recorded throughout the choice task and the presentation of food513

items was gaze-contingent: participants could only see one item at a time depending on which box they514

looked at; following Folke and colleagues [7], this was done to reduce the risk that participant, while515

gazing one item, would still look at the other item in their visual periphery.516

Once all tasks were completed, one trial was randomly selected from the choice task. The BDM bid517

value of the preferred item (the chosen one in the like frame and the unchosen one in the dislike frame)518

was compared with a randomly generated number between £0-3. If the bid was higher than the BDM519

generated value, an amount equivalent to the BDM value was subtracted from their £20 payment and the520

participant received the food item. If the bid was lower than the generated value, participants were paid521

£20 for their time and did not receive any snack. In either case, participants were required to stay in the522

testing room for an extra hour and were unable to eat any food during this time other than food bought in523

the auction. Participants were made aware of the whole procedure before the experiment began.524

Perceptual Experiment: Perceptual Experiment had a design similar to the one implemented in Value525

Experiment, except that alternatives were visual stimuli instead of food items. In this task, participants had526

to choose between two circles filled with dots (for a schematic diagram see Figure 1), again in two frames.527

In the most frame, they had to pick the one with more dots; and the one with fewer dots in the fewest528

frame. The total number of dots presented in the circles could have three numerosity levels (= 50, 80 and529

110 dots). For each pair in those 3 levels, the dot difference between the circles varied in 10 percentage530
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levels (ranging from 2% to 20% with 2% steps). To increase the difficulty of the task, in addition to531

the target dots (blue-green coloured), distractor dots (orange coloured) were also shown. The number532

of distractor dots was 80% of that of target dots (40, 64, 88 for the 3 numerosity levels, respectively).533

Pairs were presented twice and counterbalanced for item presentation. After 40 practice trials (20 initial534

trials with feedback, last 20 without), participants completed by 3 blocks of 40 trials in the most frame535

and the same number in the fewest frame; they faced blocks with alternating frames, with a presentation536

order counterbalanced across participants. On the top left side of the screen a message indicating Most or537

Fewest reminded participants of the current frame. Participants reported their confidence level in making538

the correct choice at the end of each trial. As in the previous experiment, the presentation of each circle539

was gaze contingent. Eye tracking information was recorded for each trial. Participants received £7.5 for540

one hour in this study.541

Both tasks were programmed using Experiment Builder version 2.1.140 (SR Research).542

4.2 Exclusion criteria543

Value Experiment: We excluded individuals that met any of the following criteria:544

1. Participants used less than 25% of the BDM value scale.545

2. Participants gave exactly the same BDM value for more than 50% of the items.546

3. Participants used less than 25% of the choice confidence scales.547

4. Participants gave exactly the same confidence rating for more than 50% of their choices.548

5. Participants did not comply with the requirements of the experiment (i.e., participants that con-549

sistently choose the preferred item in dislike frame or their average blink time is over 15% of the550

duration of the trials).551

Perceptual Experiment: Since for Perceptual Experiment the assessment of the value scale is irrelevant,552

we excluded participants according to criteria 3, 4 and 5.553

4.3 Participants554

Value Experiment: Forty volunteers gave their informed consent to take part in this research. Of these,555

thirty-one passed the exclusion criteria and were included in the analysis (16 females, 17 males, aged556

20-54, mean age of 28.8). One participant was excluded for using less than 25% of the bidding scale557

(criteria 1). A second participant was excluded according to criteria 2 as they frequently gave the same558

bid value. A further 4 participants were excluded under criteria 4. Three participants were excluded due559

to criteria 5. In the latter case, one participant’s eye-tracking data showed the highest number of blink560

events and made choices without fixating any of the items; the other two did not comply with the frame561

manipulation. To ensure familiarity with the snack items, all the participants in the study had lived in the562

UK for one year or more (average 17 years).563

Perceptual Experiment: Forty volunteers were recruited for the second experiment. Thirty-two564

participants (22 females, 10 males, aged 19-50, mean age of 26.03) were included in the behavioural and565

regression analyses. Three participants were excluded for repetition of the confidence rating (criteria 4).566

Five participants were removed for criteria 5: four of them had performance close to chance level or did567

not followed the frame modification, and one participant presented difficulties for eye-tracking. Due to568

instability in parameter estimation (problem of MCMC convergence), four additional participants were569

removed from the GLAM modelling analysis.570
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All participants signed a consent form and both studies were done following the approval given by the571

University College London, Division of Psychology and Language Sciences ethics committee.572

4.4 Eye-tracking573

Value and Perceptual Experiments: An Eyelink 1000 eye-tracker (SR Research) was used to collect574

the visual data. Left eye movements were sampled at 500 Hz. Participants rested their heads over a575

head support in front of the screen. Display resolution was of 1024 x 768 pixels. To standardise the576

environmental setting and the level of detectability, the lighting was monitored in the room using a dimmer577

lamp and light intensity was maintained at 4±0.5 lx at the position of the head-mount when the screen578

was black.579

Eye-tracking data were analysed initially using Data Viewer (SR Research), from which reports were580

extracted containing details of eye movements. We defined two interest-areas (IA) for left and right581

alternatives: two squares of 350 x 350 pixels in Value Experiment and two circles of 170 pixels of radius582

for Perceptual Experiment. The data extracted from the eye-tracker were taken between the appearance of583

the elements on the screen (snack items or circle with dots in experiments 1 and 2, respectively) and the584

choice button press (confidence report period was not considered for eye data analysis).585

The time participants spent fixating on each IA was defined the dwelling time (DT). From it, we586

derived a difference in dwelling time (∆DT) for each trial by subtracting DT of the right IA minus the587

DT of the left IA. Starting and ending IA of each saccade were recorded. This information was used to588

determine the number of times participants alternated their gaze between IAs, i.e., ‘gaze shifts’. The total589

number of gaze shifts between IAs was extracted for each trial, producing the gaze shift frequency (GSF)590

variable.591

4.5 Data Analysis: Behavioural Data592

Behavioural measures during like/dislike and most/fewest frames were compared using statistical tests593

available in SciPy. Sklern toolbox in Python was used to perform logistic regressions on choice data.594

Fixation time series analysis was performed following Kovach et al. [18] methodology. We segmented595

the time series of all the trials in samples of 10ms. We fixed all the trials time series to the beginning596

of the trial, when participant could start exploring the gaze-contingent alternatives. We considered an597

analysis window of 2000 ms after the presentation of stimuli for all the trials. Please notice that not598

all the trials have the same duration and no temporal normalization was performed in this analysis. For599

each time sample, we obtained the gaze position and the difference in evidence (i.e. ∆Value or ∆Dots)600

for all trials across participants and then Pearson correlation was calculated. Permutations testing was601

used to assess the difference between the time series in like/dislike and most/fewest frames. Instantaneous602

fixations (across trials and frames) were shuffled 200 times to create a null distribution of the difference603

of correlation coefficients between frames. False discovery rate (FDR) was used to correct for multiple604

tests the P-values obtained from the permutation test (α ≤ 0.01). All of the hierarchical analyses were605

performed using lme4 package [45] for R integrated in a Jupyter notebook using the rpy2 package606

(https://rpy2.readthedocs.io/en/latest/). For choice models, we predicted the log odds607

ratio of selecting the item appearing at the right. Fixed-effects confidence interval were calculated by608

multiplying standard errors by 1.96. Additionally, we predicted confidence using a linear mixed-effects609

model. Predictors were all z-scored at participant level. Matplotlib/Seaborn packages were used for610

visualization.611

https://rpy2.readthedocs.io/en/latest/
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4.6 Data Analysis: Attentional Model - GLAM612

To get further insight on potential variations in the evidence accumulation process due to the change in613

frames we used the Gaze-weighted Linear Accumulator Model (GLAM) developed by Thomas et al. [11].614

GLAM is part of the family of linear stochastic race models in which different alternatives (i, i.e., left615

or right) accumulate evidence (Ei) until a decision threshold is reached by one of them, determining the616

chosen alternative. The accumulator for an individual option is described by the following expression:617

Ei(t) = Ei(t−1)+νRi + εt

with εt ∼ N(0,σ) and Ei(t = 0) = 0
(5)

With a drift term (ν) controlling the speed of relative evidence (Ri) integration and i.i.d. noise terms618

with normal distribution (zero-centered and standard deviation σ ). Ri is a term that expresses the amount619

of evidence that is accumulated for item i at each time point t. This is calculated as follows. We denote by620

gi, the relative gaze term, calculated as the proportion of time that participants observed item i:621

gi =
DTi

DT1 +DT2
(6)

with DT as the dwelling time for item i during an individual trial. Let ri denote the value for item i622

reported during the initial stage of the experiment. We can then define the average absolute evidence for623

each item (Ai) during a trial:624

Ai = giri +(1−gi)γri (7)

This formulation considers a multiplicative effect of the attentional component over the item value,625

capturing different rates of integration when the participant is observing item i or not (unbiased and biased626

states, respectively). The parameter γ is the gaze bias parameter: it controls the weight that the attentional627

component has in determining absolute evidence. Thomas and colleagues [11] interpret γ as follows:628

when γ = 1, bias and unbiased states have no difference (i.e., the same ri is added to the average absolute629

evidence regardless the item is attended or not); when γ < 1, the absolute evidence is discounted for the630

biased condition; when γ < 0, there is a leak of evidence when the item is not fixated. Following Thomas631

et al. [11], in our analysis we allowed γ to take negative values, but our results do not change if γ is632

restricted to [0, 1] (Appendix 6 Figure 2). Finally, the relative evidence of item i, Ri
*, is given by:633

R∗i = Ai−max j(A j) = Ai−A j → R∗right =−R∗left (8)

Since our experiment considers a binary choice the original formulation of the model [11], proposed634

for more than 2 alternatives, Ri
* is reduced to subtract the average absolute evidence of the other item.635

Therefore, for the binary case, the Ri
* for one item will be additive inverse of the other, e.g., if the left item636

has the lower value, we would have Rleft
* <0 and Rright

* >0. Additionally, in their proposal for GLAM,637

Thomas and colleagues [11] noted that Ri
* range will depend on the values that the participant reported,638

e.g., evidence accumulation may appear smaller if participant valued all the items similarly, since Ri
* may639

be lower in magnitude. This may not represent the actual evidence accumulation process since participants640
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may be sensitive to marginal differences in relative evidence. To account for both of these issues a logistic641

transformation is applied over Ri
* using a scaling parameter τ:642

Ri =
1

1+ e−τR∗i
(9)

In this case Ri will be always positive and the magnitude of the difference between Rright and Rleft643

will be controlled by τ , e.g., higher τ will imply a bigger difference in relative evidence (and hence644

accumulation rate) between left and right item. In the case that τ = 0 the participant will not present any645

sensitivity to differences in relative evidence.646

Given that Ri represents an average of the relative evidence across the entire trial, the drift rate in Ei647

can be assumed to be constant, which enables the use of an analytical solution for the passage of time648

density. Unlike aDDM [1], GLAM does not deal with the dynamics of attentional allocation process in649

choice. Details of these expressions are available at Thomas et al. [11] . In summary, we have 4 free650

parameters in the GLAM: ν (drift term), γ (gaze bias), τ (evidence scaling) and σ (normally distributed651

noise standard deviation).652

The model fit with GLAM was implemented at a participant level in a Bayesian framework using653

PyMC3 [46]. Uniform priors were used for all the parameters:654

ν ∼ Uniform(1-10, 0.01)655

γ ∼ Uniform(-1, 1)656

σ ∼ Uniform(1-10,5)657

τ ∼ Uniform(0, 5)658

Value Experiment. We fitted the model for each individual participant and for like and dislike frames,659

separately. To model participant’s behaviour in the like frame we used as input for GLAM the RTs and660

choices, plus BDM bid values and relative gaze for left and right alternatives for each trial. The original661

GLAM formulation (as presented above) assumes that evidence is accumulated in line with the preference662

value of a particular item (i.e., “how much I like this item”). When information about visual attention is663

included in the model, the multiplicative model in GLAM assumes that attention will boost the evidence664

accumulation already defined by value. Our proposal is that evidence accumulation is a flexible process665

in which attention is attracted to items based on the match between their value and task-goal (accept or666

reject) and not based on value alone, as most of the previous studies have assumed. Since in the dislike667

frame the item with the lower value becomes relevant to fulfil the task, we considered the opposite value668

of the items (ri,dislike = 3 - ri,like, e.g., item with value 3, the maximum value, becomes value 0) as an669

input for GLAM fit. For both conditions, model fit was performed only on even-numbered trials using670

Markov-Chain-Monte-Carlo sampling, using implementation for No-U-Turn-Sampler (NUTS), 4 chains671

were sampled, 1000 tuning samples were used, 2000 posterior samples to estimate the model parameters.672

The convergence was diagnosed using the Gelman-Rubin statistic (|R̂ – 1|<0.05) and also corroborating673

that the effective sample size (ESS) was high (ESS >100) for the four parameters (ν ,γ ,σ ,τ). Considering674

all the individual models, we found divergences in less than 3% of the estimated parameters. Model675

comparison was performed using Watanabe-Akaike Information Criterion (WAIC) scores available in676

PyMC3, calculated for each individual participant fit.677

Pointing to check if the model replicates the behavioural effects observed in the data [47], simulations678

for choice and response time (RT) were performed using participant’s odd trials, each one repeated 50679

times. For each trial, value and relative gaze for left and right items were used together with the individual680



Visual attention modulates the integration of goal-relevant evidence and not value — 23/27

estimated parameters. Random choice and RT (within a range of the minimum and maximum RT observed681

for each particular participant) were set for 5% of the simulations, replicating the contaminating process682

included in the model as described by Thomas et al. [11].683

Additionally, we simulated the accumulation process in each trial to obtain a measure of balance684

of evidence [26, 24] for each trial. The purpose of this analysis was to replicate the effect of ΣValue685

over confidence (check Results for details) and check if it arises from the accumulation process and686

its interaction with attention. Balance of evidence in accumulator models has been used previously as687

an approximation to the generation of confidence in perceptual and value-based decision experiments688

[24, 48, 21]. Consequently, using the value of the items and gaze ratio from odd-numbered trials, we689

simulated two accumulators (equation 5), one for each alternative. Our simulations used the GLAM690

parameters obtained from participant’s fit. Once the boundary was reached by one of the stochastic691

accumulators (fixed boundary = 1), we extracted the simulated RT and choice. The absolute difference692

between the accumulators when the boundary was reached (∆e = |Eright(tfinal) - Eleft(tfinal)|) delivered the693

balance of evidence for that trial. In total 37200 trials were simulated (10 repetitions for each one of694

the trials done by the participants). A linear regression model to predict simulated ∆e using |∆Value|,695

simulated RT and ΣValue as predictors was calculated with the pooled participants’ data. This model696

was chosen since it was the most parsimonious model obtained to predict participant’s confidence in the697

Value Experiment (Appendix 4 Figure 1). The best model includes GSF as predictor in the regression,698

but since GLAM does not consider the gaze dynamics we removed it from the model. ∆e simulations699

using a GLAM without gaze influence (i.e., equal gaze time for each alternative) were also generated,700

to check if gaze difference was required to reproduce ΣValue effect over confidence. The parameters701

fitted for individual participants were also used in the no-gaze difference simulation. The same linear702

regression model (∆e∼ |∆Value| + simulated RT + ΣValue) was used with the data simulated with no-gaze703

difference.704

Perceptual Experiment. In the Perceptual Experiment, we repeated the same GLAM analysis done in705

Value Experiment. Due to instabilities in the parameters’ fit for some participants, we excluded 4 extra706

participants. Twenty-eight participants were included in this analysis. Additionally, the GLAM fit in707

this case was done removing outlier trials, i.e., trials with RT higher than 3 standard deviations (within708

participant) or higher than 20 seconds. Overall less than 2% of the trials were removed. For most frame,709

relative gaze and perceptual evidence (number of dots) for each alternative were used to fit choice and RT.710

In a similar way to the consideration taken in the dislike case, we reassigned the perceptual evidence in711

the fewest frame (ri,fewest = 133 - ri,most+ 40 , considering that 133 is the higher number of dots presented712

and 40 dots the minimum) in a way that the options with higher perceptual evidence in the most frame713

have the lower evidence in the fewest frame. The same MCMC parameters used to fit the model for each714

participant in the Value Experiment were used in this case (again, only even-numbered trials were used to715

fit the model). As in the Value Experiment, model convergence was assessed using R̂ and ESS. Overall,716

we observed divergences in less than 2% of parameter estimations across participants. Behavioural717

out-of-sample simulations (using the odd-numbered trials) and balance of evidence simulations (33600718

trials simulated in the Perceptual Experiment) were considered in this analysis. We tested the effect of719

ΣDots over confidence with a similar linear regression model than the one used in the Value Experiment.720

Pooled participants’ data for |∆Dots|, simulated RT and ΣDots was used to predict ∆e. ∆e simulations721

using a GLAM without gaze asymmetry were also calculated in this case. All the figures and analysis722

were done in python using GLAM toolbox and custom scripts.723
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 38 
Value Experiment. We examined how the frame manipulation impacted overall performance 39 

(Appendix 1 Figure 1A). We defined "accuracy" as the proportion of trials in which participant’s 40 

reported values (BDM bid) correctly predicted their binary decision, i.e., they select the item 41 

with highest value in the like frame and the one with lowest value in the dislike frame. Overall 42 

accuracy was not significantly different in both frames (MeanLike=0.77; MeanDislike=0.75, 43 

t(30)=1.71; p=0.1). We also found that participants had slightly slower reaction times (RTs) in 44 

the dislike frame (MeanLike=2858.2 ms, MeanDislike=3152.7 ms; t(30)=-2.52; p<0.05). 45 

Participants reported lower confidence in the dislike frame (Mean∆Confidence=0.19; t(30)=4.49; 46 

p<0.001) and shifted their gaze (gaze shift frequency, GSF) between items more during dislike 47 

trials (Mean∆|GSF|=-0.110; t(30)=-2.99; p<0.01). These results overall suggest that the subjects 48 

may have found the dislike condition slightly less intuitive. Although this did not affect their 49 

performance, it slightly reduced their confidence and increased RT and GSF.   50 

 51 
As observed in previous studies [7,21], we found that choice accuracy was modulated by 52 

confidence: decisions in which participants reported high-confidence were more accurately 53 

predicted by the value estimate collected before the experiment – the slope of the logistic 54 

curve is steeper in the case of high confidence (Figure 1B, Results section). In this study, this 55 

effect is replicated in both like (low confidence: β=0.769; high confidence: β=1.633) and dislike 56 

(low confidence: β=-0.642; high confidence: β=-1.363) frames. Note that the inversion of the 57 

sign of the slopes in like vs dislike frames indicate that participants were performing the task 58 

correctly (∆βLike-Dislike: t(30)=8.14, p<0.001), selecting the item with lower value during the 59 

dislike frame (Figure 1C, Results section). Choice accuracy (steepness of the slopes) was not 60 

significantly different between like and dislike frames (∆|βLike-Dislike|: t(30)=1.58, p=0.124). 61 

 62 

Perceptual Experiment. We repeated the same analysis for the behavioural performance in 63 

most and fewest frames (Appendix 1 Figure 1B). In contrast to the Value Experiment, we 64 

observed a slight reduction in accuracy in participant responses for the fewest frame 65 

(MeanMost=0.77, MeanFew=0.74, t(31)=2.46; p<0.05); unlike the Value Experiment, however, 66 

we did not find differences in RTs (MeanMost=4029.57 ms, MeanFew=3975.59 ms; t(31)=0.32; 67 

p=0.75).  During the fewest frame participants reported lower confidence (Mean∆Confidence=0.24; 68 

t(31)=5.62; p<0.001) and shifted their gaze more between alternatives (Mean∆|GSF|=-0.17; 69 

t(31)=-4.15; p<0.001), as observed in the Value Experiment.  70 

 71 

Appendix 1: Task Framing Differences 
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Participants also reported higher confidence in trials that better discriminated the number of 72 

dots (Figure 1E, Results section). This effect was replicated in both most (low confidence: 73 

β=1.142; high confidence: β=2.164) and fewest (low confidence: β=-1.118; high confidence: 74 

β=-2.010) frames. The inversion of the sign of the slopes in most vs fewest frames also shows 75 

that participants were performing correctly (∆βMost-Few: t(31) = 22.22, p<0.001); the magnitude 76 

of the slopes was not significantly different between the two frames (∆|βMost-Few|: t(31)=0.79, 77 

p=0.434; Figure 1F, Results section). This pattern of results mirrors the pattern seen in the 78 

Value Experiment. 79 

 80 

 81 
 82 
Appendix 1 Figure 1. Behavioural results for Value (A) and Perceptual (B) Experiments. 83 
Confidence, DDT and GSF values have been z-scored per participant. In the violin plot, red 84 
and blue areas indicate the distribution of the parameters across participants. Black bars 85 
present the 25, 50 and 75 percentiles of the data. Solid colour indicates the Value Experiment 86 
and striped colours indicate the Perceptual Experiment. RT: reaction time; ∆DT: Difference in 87 
Dwell Time; GSF: Gaze Shift Frequency. 88 

 89 
 90 
 91 
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 93 
 94 
 95 
 96 
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 98 
 99 



 5 

 100 

 101 
 102 
Appendix 1 Figure 2. Logistic regression predicting choice from the difference in value 103 
between the two items (∆Value). All participants in the Value Experiment, like frame, are 104 
presented. Light blue lines depict the logistic fit calculated using only low confidence trials. 105 
Dark blue lines show the logistic fit only for high confidence trials. Segmented black line 106 
considers the logistic regression calculated using all the trials. 107 
  108 
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 110 

Appendix 1 Figure 3. Logistic regression predicting choice from the difference in value 111 
between the two items (∆Value). All participants in the Value Experiment, dislike frame, are 112 
presented. Light red lines depict the logistic fit calculated using low confidence trials. Dark red 113 
lines show the logistic fit using high confidence trials. Segmented black line considers the 114 
logistic regression calculated with all the trials. 115 
  116 
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Appendix 1 Figure 4. Logistic regression predicting choice from the difference in number of 118 
dots between the two circles (∆Dots). All participants in the Perceptual Experiment, most 119 
frame, are presented. Light blue lines depict the logistic fit calculated using only low confidence 120 
trials. Dark blue lines show the logistic fit only for high confidence trials. Segmented black line 121 
considers the logistic regression calculated with all the trials. 122 
 123 
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 125 

Appendix 1 Figure 5. Logistic regression predicting choice from the difference in number of 126 
dots between the two circles (∆Dots). All participants in the Perceptual Experiment, fewest 127 
frame, are presented. Light red lines depict the logistic fit calculated using only low confidence 128 
trials. Dark red lines show the logistic fit only for high confidence trials. Segmented black line 129 
considers the logistic regression calculated with all the trials. 130 

131 



 9 

  132 
 133 

Appendix 2 Table 1. Hierarchical logistic models for choice   134 

Models Formulas 

Model 1 Choice ~ ∆Value 

Model 2 Choice ~ ∆Value + Confidence 

Model 3 Choice ~ ∆Value + Confidence + ΣValue 

Model 4 Choice ~ ∆Value + Confidence + ΣValue + ∆DT 

Model 5 Choice ~ ∆Value + Confidence + ΣValue + ∆DT + ∆Value * Confidence 

Model 6 
Choice ~ ∆Value + Confidence + ΣValue + ∆DT + ∆Value * Confidence + 

∆Value * ΣValue 

Model 7 
Choice ~ ∆Value + Confidence + ΣValue + ∆DT + ∆Value * Confidence + 

∆Value * ΣValue + Confidence * ∆DT 

Model 8 
Choice ~ ∆Value + Confidence + ΣValue + ∆DT + GSF + ∆Value * Confidence 

+ ∆Value * ΣValue + Confidence * ∆DT + ∆Value * GSF 

 135 
In Value Experiment: ∆Value: difference in value; ΣValue: summed value; ∆DT: difference in 136 
dwell time; GSF: gaze shift frequency. In Perceptual Experiment similar models were 137 
compared but replacing ∆Value for ∆Dots and ΣValue for ΣDots. 138 
 139 

 140 

Appendix 2: Choice Regression Models 
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 141 

Appendix 2 Figure 1. Model comparison of hierarchical logistic regressions for choice. (A) 142 
Value and (B) Perceptual Experiments. Solid colour indicates the Value Experiment and 143 
striped colours indicate the Perceptual experiment. 144 

 145 

 146 
Value Experiment. Using a logistic hierarchical regression model, we investigated which 147 

factors modulated choice-proportion, defined here as the probability of choosing the item on 148 

the right side of the screen. We report here the results of the most parsimonious model (i.e., 149 

the model with a lowest BIC; Appendix 2 Figure 1) fitted to the like and dislike frames 150 

independently (Figure 2B, Results section). In  Appendix 2 Table 1 we present the parameters 151 

for each factor included in the model. In the like frame, the difference in the value of the right 152 

item minus left item (∆Value) had a positive influence on choice-proportion, i.e., participants 153 

selected the items that had higher value. This is reversed in the dislike frame: ∆Value is now 154 

a negative predictor of choice, i.e., participants selected the items that had lower value. In 155 

both conditions, confidence enhanced the effect of ∆Value, as shown by the interaction 156 

between ∆Value and confidence in the like and dislike frame. These results confirm the 157 

findings presented in Figure 1B (Results section) while controlling for other relevant variables. 158 

Unsurprisingly, confidence and summed value (ΣValue, the added value of both alternatives) 159 

were found to show no main effect on the choice-proportion. As discussed in the Results 160 

section, gaze allocation (difference in dwell time, ∆DT) is directed to the chosen item in both 161 

frames, i.e., the parameters are positive for ∆DT in like and dislike frame. 162 

 163 

 164 

 165 
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 168 

Appendix 2 Table 2. Statistical results for the hierarchical linear models for choice in Value 169 

Experiment. Z-values for the regression coefficients and their statistical significance are 170 

presented for both frames. To check significant differences of the regression coefficients 171 

between like and dislike frames repeated samples t-tests between the participants’ regression 172 

coefficients were calculated. 173 

 174 

 

Choice Value Experiment (n = 31) 

Like Dislike Like - Dislike 

z p z p t p 

∆Value 7.917 <0.001 -8.652 <0.001 10.74 <0.001 

∆DT 6.448 <0.001 6.75 <0.001 2.31 <0.05 

∆Value  
x Conf 5.446 <0.001 -4.681 <0.001 9.55 <0.001 

* Confidence and ΣValue did not have a significant effect over choice in the regression.  

 175 
 176 
 177 
 178 
Perceptual Experiment. As in the Value Experiment, we used a logistic hierarchical regression 179 

to determine the relevant factors modulating perceptual choice (choosing the circle with dots 180 

on the right side of the screen) (Figure 2D, Results section). We found that the most 181 

parsimonious model for choice was the same used in the Value Experiment, where like and 182 

dislike were replaced by most and fewest frames (Appendix 2 Figure 1B). In the most frame, 183 

the difference in the number of dots of the right alternative minus the left one (∆Dots) had a 184 

positive influence over choice; that is, participants tended to select the circle with more dots. 185 

As expected, this pattern was reversed in the fewest frame: ∆Dots was a negative predictor 186 

of choice. As in the Value Experiment, confidence modulated the effect of ∆Dots in most and 187 

fewest frames. The sum of dots presented in both circles during a trial (ΣDots) was found not 188 

to have a significant effect on either frame, as expected. However, as discussed in the Results 189 

section, confidence was found to be a negative predictor of choice in most and fewest frames. 190 

This means participants had a bias to report higher confidence when they chose the left circle. 191 

In a similar way to the Value Experiment, participants spend more time fixating the chosen 192 

alternative in both frames, with ∆DT effect being positive in most and fewest frames. 193 

 194 

 195 
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Appendix 2 Table 3. Statistical results for the hierarchical logistic models for choice in 196 

Perceptual Experiment. Z-values for the regression coefficients and their statistical 197 

significance are presented for both frames. Repeated samples t-tests between the 198 

participants’ regression coefficients in most and fewest frames were calculated. 199 

 200 

 

Choice Perceptual Experiment (n = 32) 

Most Fewest Most - Fewest 

z p z p t p 

∆Dots 14.905 <0.001 -14.394 <0.001 30.32 <0.001 

Confidence -2.823 <0.01 -6.705 <0.001 6.67 <0.001 

∆DT 10.249 <0.001 10.449 <0.001 -2.17 <0.05 

∆Dots  
x Conf 8.677 <0.001 -6.23 <0.001 23.69 <0.001 

* ΣDots did not have a significant effect over choice in the regression.  

 201 

 202 

 203 

 204 

 205 

In a study by Kovach and colleagues [18] a design similar to our value-based experiment was 206 

implemented. Participants were required to indicate the item to keep and the one to discard. 207 

They found, similarly to our findings in the value-based study, that the overall pattern of 208 

attention was mostly allocated according the task goal. However, in the first few hundred 209 

milliseconds, these authors found that attention was directed more prominently to the most 210 

valuable item in both conditions. We did not replicate this last finding in our experiment, but 211 

one possible reason for this discrepancy is that the experiment by Kovach and colleagues 212 

presented both items on the screen at the beginning of the task -- unlike in our task, in which 213 

the item was presented in a gaze-contingent way (to avoid processing in the visual periphery). 214 

This setting might have triggered an initial and transitory bottom-up attention grab from the 215 

most valuable (and often most salient) item before the accumulation process started. 216 

  217 
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 218 

 219 

Appendix 2 Figure 2. Kovach and colleagues [18] conducted a study in which participants 220 
have to choose food items in ‘keep’ and ‘discard’ frames, in a similar way to our Value 221 
Experiment. Gaze allocation was found to gravitate towards the chosen item overall, although 222 
during the initial moments of the trial (≈ 500 ms), they reported that gaze was directed towards 223 
the preferred item. To check if this effect appears in our Value Experiment we ran a regression 224 
model to predict choice (i.e., probability of choosing the item presented on the right side of the 225 
screen). We restricted the time to estimate ∆DT to the first 500 ms of the trial and used that 226 
variable as a predictor of choice in our model (A). We did not find a significant effect of gaze 227 
over choice in that period. This difference may be caused by the way the alternatives were 228 
presented during the decision time: while in Kovach et al. [18] both alternatives were always 229 
displayed on screen during deliberation time, in our experiment the presentation was gaze 230 
contingent (i.e., participants needed to explore both items at the beginning of the trial to identify 231 
the available items). (B) We recalculated the model considering the initial 1000 ms of the trial 232 
and we observe how ∆DT starts to increase its effect over choice. The positive effect of ∆DT 233 
over choice is only significant (z = 1.97, p<0.05) in the like frame; in dislike frame the small 234 
effect is only a trend (z = 1.081, p = 0.07). However, at 1000ms ∆DT is already starting to be 235 
allocated to the option coherent with the behavioural responses required by the frame, not to 236 
preference. 237 
  238 
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 239 

Appendix 2 Figure 3. Choice behaviour excluding last fixations. To assess the influence that 240 
last fixations have on the goal-relevant gaze asymmetries we repeated the hierarchical logistic 241 
modelling of choice (probability of choosing right item) in Value (B) and Perceptual (D) 242 
Experiments, excluding the last two fixations from the analysis. Note the two last fixations 243 
rather than only the last fixation, because this avoids statistical artifacts. All the results from 244 
the main analysis were confirmed: participants preferentially gazed at the item they chose in 245 
both frames (positive ∆DT effect in both experiments). All predictors were z-scored at the 246 
participant level. In both regression plots, bars depict the fixed-effects and dots the mixed-247 
effects of the regression. Error bars show the 95% confidence interval for the fixed effect. In 248 
Value Experiment: ∆Value: difference in value between the two items (ValueRight– ValueLeft); 249 

RT: reaction time; ΣValue: summed value of both items; ∆DT: difference in dwell time 250 
(DTRight– DTLeft), excluding the last two fixations; Conf: confidence. In Perceptual 251 

Experiment: ∆Dots: difference in dots between the two circles (DotsRight– DotsLeft); ΣDots: 252 

summed number of dots between both circles. ***: p<0.001, **: p<0.01, *: p<0.05.  253 

  254 
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 255 
In the main text we reported the analysis of last fixation and how its allocation to the (chosen) 256 

goal-relevant alternative is modulated by value/number of dots. This result confirmed the 257 

findings in Krajbich et al.[1] and expanded them to dislike frame and the perceptual realm. To 258 

give a more complete view of the fixations properties we additionally performed a similar 259 

analysis to Krajbich et al.[1] for first and middle fixations. 260 

It is important to notice that in our Value and Perceptual Experiments, at the beginning of each 261 

trial participants do not visualize the options since the presentation is gaze contingent. 262 

Therefore, an initial exploration is required to identify the alternatives involved in the decision. 263 

In Krajbich et al. [1] both options are visible from the beginning of the trial, however, 264 

participants’ initial fixation is still randomly allocated.  265 

For the analysis of middle fixations, if blank fixations were recorded between fixations to the 266 

same item, then those fixations were assigned to that item (e.g. ‘Right’, ‘Blank’, ‘Right’ was 267 

considered as ‘Right’, ‘Right’, ‘Right’). Trials without middle fixations (i.e. only a first and a last 268 

fixation) were removed from the analysis. Trials with no item fixations for more than 40ms at 269 

the beginning of the trial were also removed. In the following figures, results from Krajbich et 270 

al. [1] are presented together with our findings, as a reference.  271 

 272 

Appendix 3 Figure 1. Fixation duration by type. Middle fixations indicate any fixations that were 273 
not the first or last fixations of the trial. (A) In Krajbich et al. [1] middle fixations were found to 274 
be longer than first and last fixations on average. For our Value Experiment, in like (B) and 275 

Appendix 3: Fixation Analysis 
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dislike (C) frames, and Perceptual Experiment, in most (D) and fewest (F) frames, the same 276 
pattern emerges with middle usually longer that first and last fixations. Violin plots depict the 277 
distribution of participant’s average fixation time. Panel A reproduced from Krajbich et al. [1] 278 
.***: p < 0.001, **: p < 0.01, *: p < 0.05.  279 

 280 

 281 

 282 

 283 
 284 
Appendix 3 Figure 2. Fixation properties: probability that the first fixation is to the best item. 285 
(A) Krajbich et al. [4] reported that the probability is not significantly different from 50%, 286 
unaffected by the difference in ratings or difficulty (in our experiments difficulty is equivalent 287 
to the absolute difference item value, |ΔValue|, and absolute difference in number of dots, 288 
|ΔDots|) . A similar pattern emerges in our Value Experiment, for like (B) and dislike (C) 289 
frames, and Perceptual Experiment, for most (D) and fewest (F) frames. Participant responses 290 
did not diverge from chance. Importantly, while in Krajbich et al. [4] participants can see both 291 
alternatives from the beginning of the trial, our presentation was gaze contingent. Segmented 292 
blue line indicates chance level. Light grey dots correspond to individual participants’ 293 
probability of first fixation to high value/number of dots alternatives for each bin. Red or blue 294 
circles indicate the average for that bin considering all the participants. Panel A reproduced 295 
from Krajbich et al. [1]. 296 
 297 
 298 
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 299 

 300 
Appendix 3 Figure 3. Fixation properties: middle fixation duration as a function of the rating 301 
(value or number of dots) of the fixated item. (A) Krajbich et al.[1] reported that middle fixations  302 
durations were independent of the value of the fixated items. In Value Experiment, we found 303 
that middle fixation duration was independent of the value of the fixated item in like frame (B), 304 
however a slight yet significant effect in dislike (C) frame was found (hierarchical linear 305 
regression estimate: βDislike = 0.025, t(27.35) = 3.441, p <0.001). In the Perceptual Experiment, 306 
for the most (D) frame we found a significant effect of fixated value (βMost = 0.017, t(29.51) = 307 
3.013, p <0.01), but not for fewest (F) frame. Light grey dots correspond to individual 308 
participants’ middle fixation durations for each bin. Red or blue circles indicate the average for 309 
that bin considering all the participants. For the hierarchical linear regression z-scored data at 310 
participant levels was used. Panel A reproduced from Krajbich et al. [1]. 311 
 312 
 313 
 314 
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 315 
Appendix 3 Figure 4. Fixation properties: middle fixation duration as a function of the difference 316 
in ratings (value or number of dots) between the fixated and unfixated items. (A) Krajbich et 317 
al.[1] reported a slight but significant dependency of middle fixations durations on the 318 
difference in value between items. In our Value Experiment, we found that in like (B) and 319 
dislike (C) this relationship was significant (hierarchical linear regression estimate: βLike = 320 
0.015, t(28.22) = 2.192, p<0.05; βDislike=-0.027, t(28.22)=-4.415, p<0.001). Similarly, in the 321 
Perceptual Experiment, most (D) and fewest (F) frames, the dependence was found also 322 
significant (βMost = 0.01, t(29.51) = 2.663, p <0.01; βFew=-0.027, t(29.51)=-6.330, p<0.001). 323 
Interestingly, a positive sign of the effect in like and most frames indicates that middle fixations 324 
tend to be longer for the option with the higher value or number of dots. On the other hand, 325 
the  negative sign of the effect indicates that middle fixations would be longer for the option 326 
with lower value or number of dots in dislike and fewest frames. Light grey dots correspond to 327 
individual participants’ middle fixation durations for each bin. Full red or blue circles indicate 328 
participant’s average. Data is binned across participants for visualization. All the factors and 329 
the predicted variable in the hierchical regression were z-scored at participant level. Panel A 330 
reproduced from Krajbich et al. [1]. 331 
 332 
 333 
 334 
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 335 
Appendix 3 Figure 5. Fixation properties: middle fixation duration as a function of the difference 336 
in ratings between the best- and worst-rated items (difficulty of the trial). In our experiments 337 
|ΔValue| and |ΔDots| represent the difficulty of the trials. (A) Krajbich et al.[1] reported a 338 
dependency of middle fixations durations on difficulty, with longer fixations in more difficult 339 
decisions. In our Value Experiment, in like (B) and dislike (C) frames a similar pattern was 340 
found: longer middle fixations for more difficult (lower |ΔValue|) trials (hierarchical linear 341 
regression estimate: βLike = -0.029, t(28.22) = -2.262, p<0.05; βDislike=-0.047, t(28.22)=-4.415, 342 
p<0.001). The same relationship was found only in the most frame (D) but no in the fewest 343 
frame (F) in the Perceptual Experiment (βMost = -0.037, t(29.51) = -3.985, p <0.001; βFew=-344 
0.024, t(29.51)=-1.623, p=0.10). Light grey dots correspond to individual participants’ middle 345 
fixation durations for each bin. Full red or blue circles indicate participant’s average. Data is 346 
binned across participants for visualization. All the factors and the predicted variable in the 347 
hierchical regression were z-scored at participant level. Panel A reproduced from Krajbich et 348 
al. [1]. Tests presented here are based on a paired two-sided t-test between the first and last 349 
bin.***: p < 0.001, **: p < 0.01, *: p < 0.05 350 
 351 
  352 
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 353 
Appendix 4 Table 1. Hierarchical linear models for confidence 354 

Models Formulas 

Model 1 Confidence ~ |∆Value| 

Model 2 Confidence ~ |∆Value| + RT 

Model 3 Confidence ~ |∆Value| + RT + GSF 

Model 4 Confidence ~ |∆Value| + RT + GSF + ΣValue 

Model 5 Confidence ~ |∆Value| + RT + GSF + ΣValue + ∆DT 

 355 
In Value Experiment: |∆Value|: absolute difference in value; RT: reaction time; ΣValue: 356 
summed value; ∆DT: difference in dwell time; GSF: gaze shift frequency. In Perceptual 357 
Experiment similar models were compared, but replacing ∆Value for ∆Dots and ΣValue for 358 
ΣDots. 359 

 360 

Appendix 4 Figure 1. Model comparison of hierarchical linear regressions for confidence. (A) 361 
Value and (B) Perceptual Experiments. Solid colour indicates the value-based experiment and 362 
striped colours indicate the perceptual experiment. 363 

Appendix 4: Confidence Regression Models 
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 364 

Appendix 4 Table 2. Statistical results for the hierarchical linear models for confidence in Value 365 

Experiment. Z-values for the regression coefficients and their statistical significance are 366 

presented for the two frames. Repeated samples t-tests between the participants’ regression 367 

coefficients in like and dislike frames were calculated. 368 

 

Confidence Value Experiment 

Like Dislike Like - Dislike 

z p z p t p 

|∆Value| 5.465 <0.001 6.3 <0.001 -4.72 <0.01 

RT -6.373 <0.001 -7.739 <0.001 ns  

GSF -2.365 <0.05 -2.589 <0.05 ns  

ΣValue 3.206 <0.001 -4.492 <0.001 9.91 <0.001 

 369 

 370 

 371 

 372 

 373 

 374 

Appendix 4 Table 3. Statistical results for the hierarchical linear models for confidence in 375 

Perceptual Experiment. Z-values for the regression coefficients and their statistical 376 

significance are presented for the two frames. Repeated samples t-tests between the 377 

participants’ regression coefficients in most and fewest frames were calculated. 378 

 

Confidence Perceptual Experiment 

Most Fewest Most - Fewest 

z p z p t p 

|∆Value| 3.546 <0.001 7.571 <0.001 -4.554 <0.001 

RT -7.599 <0.001 -5.51 <0.001 ns  

GSF -4.354 <0.001 -5.204 <0.001 ns  

ΣDots 2.061 <0.05 -7.135 <0.001 14.621 <0.001 

 379 

  380 
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 383 

Appendix 5 Figure 1. GLAM model comparison. (A) Average WAIC scores for like and dislike 384 
GLAM models fitted at individual level. In the dislike frame, two possible models are compared: 385 
preference-value, value reported in the BDM bid was used directly to fit the data; and frame-386 
value, value was adjusted to comply with the frame modification (see Methods for more 387 
details). The model accounting for goal-relevant evidence in the dislike frame had a better fit. 388 
(B) Individual WAIC differences between dislike models fitted with frame-value and 389 
preference-value. Negative differences indicate best fits for the frame-value in all the 390 
participants. (C) Average WAIC scores for most and fewest GLAM models fitted at individual 391 
level. In the fewest frame, two possible models are compared: default-evidence, the number 392 
of dots was used directly to fit the data, and frame-evidence, evidence was adjusted to comply 393 
with the frame modification (i.e., the opposite of the number of dots was used as evidence). 394 
(D) Individual WAIC differences between fewest models fitted with frame-evidence and 395 
default-evidence. Negative differences indicate best fits for the frame-evidence in all the 396 
participants. Solid colour indicates the value-based experiment and striped colours indicate 397 
the perceptual experiment. 398 

 399 

Appendix 5: GLAM – Model Comparison and Out-of-
Sample Simulations 
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 400 

Appendix 5 Figure 2. Hierarchical GLAM model comparison. (A) Value Experiment. WAIC 401 
scores for like and dislike GLAM models fitted hierarchically. In the dislike frame, two possible 402 
models are compared: preference-value, input values corresponding to the preferences 403 
reported at the beginning of the experiment (BDM bid); and frame-value, in which value was 404 
adjusted to comply with the frame modification (see Methods for more details). In dislike frame, 405 
the model accounting for goal-relevant resulted the most parsimonious of the two. (B)  406 
Perceptual Experiment. WAIC scores for most and fewest GLAM models fitted hierarchically. 407 
In the fewest frame, two possible models are compared: default-evidence, the number of dots 408 
was used directly to fit the data, and frame-evidence, evidence was adjusted to comply with 409 
the frame modification (i.e., the opposite of the number of dots was used as evidence).  410 
 411 
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Appendix 5 Figure 3. Individual out-of-sample prediction from the GLAM model for behavioural 412 
measures in Value (dislike) (A-C) and Perceptual (fewest) Experiments (D-F). In the dislike 413 
frame, two models are used to generate simulations: preference-value, value reported in the 414 
BDM bid was used directly to fit GLAM model; and frame-value, the values were adjusted to 415 
comply with the frame modification. The model predicts participants mean reaction time (RT) 416 
(A), probability of choosing the best item (i.e., item with lower value) (B) and the influence of 417 
gaze in choice probability (C, check Results section for more details on gaze influence 418 
measure). The frame-value model correlates better with the observed data. In the Perceptual 419 
Experiment, fewest frame, also two possible models are used to generate simulations: default-420 
evidence, the number of dots was used directly to fit the data, and frame-evidence, the 421 
evidence was adjusted to comply with the context modification (i.e., opposite of the number of 422 
dots). We show the correlation between the data and simulations for RT (D), the probability of 423 
choosing the best alternative (i.e., alternative with fewer dots) (E) and gaze influence (F). In 424 
this case, frame-evidence model also predicts the behaviour in the fewest frame better. The 425 
results corresponding to the model using frame-evidence are presented in red and the models 426 
using default-evidence in pink. Dots depict the average of predicted and observed measures 427 
for each participant. Lines depict the slope of the correlation between observations and the 428 
predictions. The shadowed region presents the 95% confidence intervals, with full colour 429 
representing Value Experiment and striped colour the Perceptual Experiment. Model 430 
predictions are simulated using parameters estimated from individual fits for even-numbered 431 
trials. 432 
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  434 
 435 
Appendix 5 Figure 4. Replication of behavioural effect of interest by simulations using the 436 
GLAM fitted for like (A) and most frames (B). The four panels present 4 relevant behavioural 437 
relationships found in the data: (top left) faster responses (shorter RT) when the choice is 438 
easier (i.e., easier choices are found with higher |ΔValue| in value-based and higher |ΔDots| 439 
in perceptual); (top right) probability of choosing the right alternative increases when the 440 
difference in evidence (value or number of dots) is higher in the alternative at the right side of 441 
the screen (ΔValue and ΔDots are calculated considering right minus left options); (bottom 442 
left) the probability of choosing an alternative depends on the gaze difference; and (bottom 443 
right) the gaze influence on choice depending on the difference in gaze time between both 444 
alternatives. Solid blue dots depict the mean of the data across participants in like and most 445 
frames. Light blue dots present the mean value for each participant. In the Value Experiment 446 
the solid grey lines show the average for model simulations. In the Perceptual Experiment 447 
segmented grey lines show the model simulations. Data is binned for visualization. 448 
 449 
 450 
 451 
 452 
 453 
 454 
 455 
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 456 
 457 
Appendix 5 Figure 5. Replication of behavioural effect of interest by simulations using the 458 
GLAM fitted for dislike (A) and fewest frames (B). Frame-relevant evidence was used to fit the 459 
model. The four panels present 4 relevant behavioural relationships found in the data. Top 460 
left: faster responses (shorter RT) when the choice is easier (i.e., easier choices are found 461 
with higher |ΔValue| in value-based and higher |ΔDots| in perceptual). Top right: probability of 462 
choosing the right alternative increases when the difference in evidence (value or number of 463 
dots) is lower in the alternative at the right side of the screen (notice that -ΔValue and -ΔDots 464 
are calculated considering left minus right options). Bottom left: the probability of choosing the 465 
right alternative depends on the gaze difference favouring the right option. Bottom right: the 466 
gaze influence on choice depending on the difference in gaze time between both alternatives. 467 
Solid red dots depict the mean of the data across participants in like and most frames. Light 468 
red dots present the mean value for each participant. In the Value Experiment the solid grey 469 
lines show the average for model simulations. In the Perceptual Experiment segmented grey 470 
lines show the model simulations. Data is binned for visualization 471 
  472 
 473 
 474 
 475 
 476 
 477 
 478 
 479 
 480 
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 481 
 482 
 483 
 484 
Appendix 5 Figure 6. Replication of behavioural effect of interest by simulations using the 485 
GLAM fitted for dislike (A) and fewest frames (B). In this case, the models were fitted without 486 
adapting the values and dot numbers to the evidence that was relevant for the particular frame 487 
i.e., the preference value and the default number of dots were used to fit the model in the 488 
dislike and fewest frame, respectively. The four panels present 4 relevant behavioural 489 
relationships found in the data. Top left: faster responses (shorter RT) when the choice is 490 
easier (i.e., easier choices are found with higher |ΔValue| in value-based and higher |ΔDots| 491 
in perceptual). Top right: probability of choosing the right alternative increases when the 492 
difference in evidence (value or number of dots) is lower in the alternative at the right side of 493 
the screen (ΔValue and ΔDots are calculated consider right minus left options). Bottom left: 494 
the probability of choosing the right alternative depends on the gaze difference favouring the 495 
right option. Bottom right: the gaze influence on choice depending on the difference in gaze 496 
time between both alternatives. No replication of the behavioural effect was found in this case 497 
for the relationship between RT -|ΔValue| and RT -|ΔValue| in dislike and fewest frames, 498 
respectively. Also P(right item)-ΔValue and P(right item)-ΔValue relationship was not 499 
replicated in dislike and fewest frames, respectively. Gaze effect seem to still keep its 500 
relationship, since gaze allocation time was not modified to account for the frame shift. Solid 501 
red dots depict the mean of the data across participants in like and most frames. Light red 502 
dots present the mean value for each participant. In the Value Experiment the solid grey lines 503 
show the average for model simulations. In the Perceptual Experiment segmented grey lines 504 
show the model simulations. Data is binned for visualization 505 

  506 
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 507 
The results from the regression models presented in the Results section show that the nature 508 

of evidence integrated during the accumulation process depends on the frame in which 509 

participants make their choices. The Gaze-weighted Linear Accumulator Model (GLAM) 510 

predicts well participants’ behaviour once frame-relevant evidence is employed to fit the 511 

model. Here we show the parameters obtained from this process. Four free parameters are 512 

fitted in GLAM: ν (drift term), γ (gaze bias), τ (evidence scaling) and σ (normally distributed 513 

noise standard deviation) [11]. For Value and Perceptual Experiments, we fitted the model in 514 

both frames and in each participant separately. The parameters were fitted using the even-515 

numbered trials and in both studies the model fit was estimated using the WAIC score used 516 

to measure the fit of Bayesian Models (Appendix 5 Figure 1).  517 

 518 

Value Experiment. To explore variations in the process of accumulation of evidence 519 

characterized by GLAM, we compared the parameters obtained from the individual fit in like 520 

and dislike frames (Appendix 6 Figure 1A). No significant variation between frames was found 521 

for the gaze bias (Mean γ Like=-0.14, Mean γ Dislike=0.03 , ∆γ Like-Dislike=-0.17, t(30)=-1.66; p=0.11, 522 

ns), the scaling parameter (τ Like=2.81, τDislike=2.69, ∆τLike-Dislike=0.115 , t(30)=0.313; p=0.75, ns) 523 

and the noise term (Mean σLike=0.0075, Mean σ Dislike=0.0074, ∆σLike-Dislike=0.00012, 524 

t(30)=0.342; p=0.734, ns). We observed a significantly higher value of the drift term, ν, during 525 

the like frame (ν Like=5.60x10-5, ν Dislike=4.53x10-5, ∆νLike-Dislike=1.06 x10-5, t(30)=3.44; p<0.01). 526 

This means that evidence is accumulated faster during the like frame, which gives us an 527 

insight into the differences in the evidence accumulation product of the change frame 528 

modification. 529 

Perceptual Experiment. We also compared the parameters obtained from GLAM individual fit 530 

in the perceptual experiment (Appendix 6 Figure 1B). No significant variation between frames 531 

was found for the scaling parameter (τMost=0.34, τFew=0.13, ∆τ Most-Few=0.212, t(27)=1.43; 532 

p=0.16, ns) or the drift term (Mean νMost=3.8x10-5, Mean ν Few=3.99x10-5, ∆νMost-Few=-1.92x10-533 

6, t(27)=-0.465; p=0.645, ns). The gaze bias is larger during the fewest frame (γMost=0.48, 534 

γFew=0.26, ∆γMost-Few=0.22, t(27)=2.61; p<0.05). The σ parameter is also significantly different 535 

depending on the frame, with higher noise in the most frame (σMost=0.0073, σFew=0.0066, ∆σ 536 

Most-Few=0.0007, t(27)=2.26; p<0.05). In summary, the accumulation process seems to be 537 

noisier and less affected by visual attention in the most frame. In both frames, the finding that 538 

γ<1 indicates that gaze modulates the accumulation of evidence. 539 

 540 

Appendix 6: GLAM – Parameter Comparison 
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 541 

 542 

Appendix 6 Figure 1. Parameters fitted at subject level using GLAM in Value (A) and 543 
Perceptual (B) Experiments. The free parameters are γ (gaze bias), τ (evidence scaling), ν 544 
(drift term) and σ (standard deviation of the normally distributed noise).  In the Value 545 
Experiment we found a significant decrease in the drift term during the dislike frame, maybe 546 
indicating a more uncertain decision process. The parameters in Perceptual Experiment were 547 
significantly different for gaze bias and noise term, with higher γ and σ values in the most 548 
frame. This may indicate a reduced effect of gaze on choice during the most frame and slightly 549 
less noisier accumulation process in the fewest frame.  In each experiment, the GLAM 550 
parameters were fitted independently for each frame. In the violin plot, red and blue areas 551 
indicate the distribution of the parameters across participants. Black bars present the 25, 50 552 
and 75 percentiles of the data. Solid colour indicates the Value Experiment and striped colours 553 
indicate the Perceptual Experiment. 554 

 555 



 30 

Appendix 6 Figure 2. GLAM model parameters when the model fit is performed constraining 556 
γ to [0,1] range. Thomas et al. [11] describes a “leakage” of evidence when γ<0, which can be 557 
a conflicting assumption in this type of models. We corroborated that the differences between 558 
the parameters in like/dislike and most/fewest remain the same in comparison to the fit 559 
reported constraining γ to [-1,1]. 560 

 561 
  562 
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 563 
 564 

The attentional Drift Diffusion Model (aDDM) has been extensively used in literature to 565 

characterise the effect of attention over choice [1]. Unlike GLAM, aDDM considers the 566 

dynamics of fixations during trials to fit the model. To further support our idea that goal-relevant 567 

evidence is accumulated, we fitted both Value and Perceptual datasets with the aDDM model, 568 

as implemented by Tavares et al. [8] (aDDM toolbox, https://github.com/goptavares/aDDM-569 

Toolbox).  570 

 571 

The aDDM model assumes that evidence is accumulated dynamically in a variable called the 572 

relative decision value (RDV) signal. RDV starts at 0 and it evolves over time, accumulating 573 

evidence until a barrier is reached (+1 or -1) which will define the alternative to be selected 574 

(right or left). Every time step, RDV changes according to   μΔt + εt , with μ the deterministic 575 

change (slope term) and ε the Gaussian noise term. The fixation to the two alternatives will 576 

define the value of μ: when the left option is fixated μ = d(r
left 

− θr
right

) and μ = d(r
right 

− 577 

θr
left

) for the right option. Therefore, the aDDM model considers three free parameters: d, σ 578 

and θ. The parameter d is a positive constant characterising the speed of integration; σ is the 579 

standard deviation for a zero-mean Gaussian distribution for noise, and θ is the attentional 580 

parameter that controls the size of the attentional bias (range between 0 to 1). If θ=1, the 581 

model is reduced to a standard drift-diffusion model (DDM) without attentional bias. 582 

 583 

Group model fitting. The models were fitted to choice and RT data independently for like and 584 

dislike frames in our Value Experiment and for most and fewest frames in the Perceptual 585 

Experiment. The odd trials of the pooled data from 31 participants in value-based data and 32 586 

participants for perceptual case was used to fit the models. The model considers the available 587 

evidence (item value and number of dots) and the sequence of fixations for each trial. As in 588 

GLAM, we fitted the parameters in dislike and fewest frames considering a version of the input 589 

values/evidence that accounted for the change in the objective of the task (i.e., reporting item 590 

not preferred or the alternatives with fewer dots, respectively). To compare, we also fitted 591 

another model using the evidence “by default” (i.e., BDM bid values or number of dots in the 592 

circles). To account for the different ranges of item valuation used by the participants we 593 

normalized the value reports by binning the item values at a participant level.  In the Value 594 

Experiment, the data were separated in 6 bins using quantiles-based discretization. In the 595 

perceptual case, given the distribution of the evidence (i.e three numerosity levels and smaller 596 

Appendix 7: Attentional Drift Diffusion Model 
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dots differences between two alternatives) we separated the dots data in 8 bins. The maximum 597 

likelihood estimation (MLE) procedure was carried in iterative steps searching over a grid with 598 

the 3 model parameters. Initial grid was set to [0.001, 0.005, 0.01] for d, [0.01, 0.05, 0.1] for σ 599 

and [0.01, 0.5, 1] for θ. The likelihood for choice and RT in odd-trials, conditional to the pattern 600 

of fixations observed in that trial, was calculated for each combination of parameters in the 601 

grid (check Tavares et al. [8] for the details of the algorithm to simulate aDDM trials). The time 602 

step used for the estimation of aDDM was 10 ms. The set of parameters with lower negative 603 

log-likelihood (NLL) was used as center of the grid for the next iteration. Therefore, the grid to 604 

search in the next iteration (t+1) was defined as [dt−Δdt/2, dt, dt+ Δdt/2], [θt− Δθt/2,  θt, Δθt/2], 605 

and [σt−Δσt/2,σt,σt+Δσt/2], considering the respective constrains of each parameter value. 606 

The iterative process finished once the improvement in the MLE of the proposed parameter 607 

solution was smaller than 0.05% (|minNNLt+1 – minNNLt| < 0.0005*minNNLt). The 608 

convergence was reached after two iterations in our models.  In our results, we found that for 609 

both, dislike and fewest conditions, the model fitted using goal-relevant evidence had better 610 

performance than the model using default estimated value or number of dots, as indicated by 611 

a lower NLL value. 612 

   613 

Appendix 7 Table 1. aDDM model parameters. Estimated parameters for Value and 614 

Perceptual Experiments. Parameter description - d: speed of integration; σ: standard deviation 615 

for the noise distribution, θ :attentional bias. NNL: negative log-likelihood of the models 616 

indicating goodness-of-fit. 617 

 618 

 Value-based Perceptual 

 Like 

Dislike 

Preference-

values 

Dislike 

Frame-

values 

More 

Fewest 

Default-

evidence 

Fewest 

Frame-

evidence 

d 0.001 0 0.001 0.001 0.001 0.001 

σ 0.05 0.05 0.05 0.05 0.05 0.05 

θ 0 0 0 0.255 0 0.01 

NLL 12441.012* 13342.297 12640.837* 13948.411* 14169.154 13826.983* 

 619 
* Indicates the model with lower NLL for that frame  620 

 621 
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 622 

Out-of-sample group simulations. To test the capacity of the model to predict out-of- sample, 623 

the aDDM with the best fitted parameters using odd-numbered trials was used to predict the 624 

behaviour observed on the even-numbered trials. We did 40000 simulations for the Value 625 

Experiment and 48000 trials for the Perceptual Experiment. Fixations, latencies and inter-626 

fixations transitions were sampled from empirical distributions, obtained from the pooled even-627 

numbered trials across participants following the procedure used by Tavares and colleagues 628 

[8].  629 

 630 

  631 

 632 

Appendix 7 Figure 1. Replication of behavioural effects by aDDM simulations for like (A) and 633 
most frames (B). The four panels present 4 relevant behavioural relationships found in the 634 
data. Top left: faster responses (shorter reaction time, RT) when the choice is easier (i.e., 635 
easier choices are found with higher |ΔValue| and |ΔDots| in  Value an Perceptual 636 
Experiments, respectively). Top right: probability of choosing the right alternative increases 637 
when the evidence towards the right item is higher (ΔValue and ΔDots are calculated 638 
considering right minus left options). Bottom left: the probability of choosing the item on the 639 
right side of the screen depends on the gaze time difference (ΔGaze, calculated as the time 640 
observing the right minus the left item). Bottom right: gaze influence on choice depending on 641 
the difference in ΔGaze (check Results section for more details on gaze influence). Solid blue 642 
dots depict the mean of the data across participants in like and most frames. Light blue dots 643 
show the mean value for each participant. In Value Experiment the solid grey lines show the 644 
average for model simulations. In the Perceptual Experiment segmented grey lines show the 645 
average for model simulations. Data and simulations were binned for visualization. 646 
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 647 

Appendix 7 Figure 2. Replication of behavioural effects by aDDM simulations for dislike (A) 648 
and fewest (B) frames. Importantly, these models were fitted using goal-relevant evidence. 649 
The four panels present 4 relevant behavioural relationships found in the data. Top left: faster 650 
responses (shorter reaction time, RT) when the choice is easier (i.e., easier choices are found 651 
with higher |ΔValue| and |ΔDots| in Value and Perceptual Experiments, respectively). Top 652 
right: probability of choosing the right alternative increases when the evidence towards the left 653 
item is higher (-ΔValue and –ΔDots, i.e., increment when left item is more valuable or has 654 
more dots than the right item). Bottom left: the probability of choosing the item on the right 655 
side of the screen depends on the gaze time difference (ΔGaze, calculated as the time 656 
observing the right minus the left item). Bottom right: gaze influence on choice depending on 657 
the difference in ΔGaze (check Results section for more details on gaze influence). Solid red 658 
dots depict the mean of the data across participants in like and most frames. Light red dots 659 
show the mean value for each participant. In Value Experiment the solid grey lines show the 660 
average for model simulations. In the Perceptual Experiment segmented grey lines show the 661 
average for model simulations. Data and simulations were binned for visualization. 662 

 663 

 664 
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 665 

Appendix 7 Figure 3. Replication of behavioural effects by aDDM simulations for dislike (A) 666 
and fewest frames (B). Importantly, these models were fitted using the default evidence in 667 
Value and Perceptual Experiments, i.e., preference value and number of dots, respectively. 668 
Unlike the models fitted with goal-relevant evidence, these models do not capture reaction 669 
time (RT) and choice behaviour in dislike and fewest frames.  The four panels present 4 670 
relevant behavioural relationships found in the data. Top left: faster responses (shorter RT) 671 
when the choice is easier (i.e., easier choices are found with higher |ΔValue| and |ΔDots| in  672 
Value an Perceptual Experiments, respectively). Top right: probability of choosing the right 673 
alternative increases when the evidence towards the left item is higher (ΔValue and ΔDots are 674 
calculated considering right minus left options). Bottom left: the probability of choosing the 675 
item on the right side of the screen depends on the gaze time difference (ΔGaze, calculated 676 
as the time observing the right minus the left item). Bottom right: gaze influence on choice 677 
depending on the difference in ΔGaze (check Results section for more details on gaze 678 
influence). Solid blue dots depict the mean of the data across participants in like and most 679 
frames. Light blue dots show the mean value for each participant. In Value Experiment the 680 
solid grey lines show the average for model simulations. In the Perceptual Experiment 681 
segmented grey lines show the average for model simulations. Data and simulations were 682 
binned for visualization. 683 

 684 
 685 
 686 
 687 
 688 
 689 
  690 
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 691 

 692 

Appendix 8 Figure 1. Balance of evidence simulations in the Value Experiment. The difference 693 
between accumulators (Δe) obtained from GLAM simulations matches participants’ 694 
confidence. Top left: a higher value difference between the two items (|ΔValue|) increases 695 
confidence and simulated Δe. Top right: in the like frame, an increase in the summed value of 696 
the two alternatives (|ΣValue|) boosts confidence and simulated Δe. Bottom left: as in like 697 
frame, |ΔValue| boosted confidence and Δe in dislike frame. Bottom right: in the dislike frame, 698 
the effect of |ΣValue| over confidence flips: confidence and Δe decrease with higher values of 699 
the alternatives, accounting for the change in goal. Blue and red dots depict the (z-scored) 700 
confidence taken from participants in like and dislike frames (respectively). Grey line presents 701 
the model simulations for both separate frames. Data was segmented in 11 bins for ΔValue 702 
or ΣValue. 703 

Appendix 8: GLAM – Balance of Evidence Simulations 
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 704 

Appendix 8 Figure 2. Balance of evidence simulations in the Perceptual Experiment. As in 705 
Value Experiment, the difference between accumulators (Δe) obtained from GLAM 706 
simulations matches participants’ confidence. Top left: a higher difference in number of dots 707 
between the two circles (|ΔDots|) increases confidence and simulated Δe. Top right: in the 708 
most frame, an increase in the summed number of dots (|ΣDots|) boosts confidence and 709 
simulated Δe. Bottom left: as in most frame, |ΔDots| boosted confidence and Δe in fewest 710 
frame. Bottom right: in the fewest frame, the effect of |ΣDots| over confidence flips: confidence 711 
and Δe decrease with higher number of dots in both circles, accounting for the change in goal. 712 
Blue and red dots depict the (z-scored) confidence taken from participants in like and dislike 713 
frames (respectively). Grey line presents the model simulations for both separate frames. Data 714 
was segmented in 11 bins for ΔValue or ΣValue.715 



 716 

 717 

 718 

 719 

 720 

 721 

 722 

 723 

 724 

 725 

 726 

 727 

 728 

 729 

 730 

Appendix 8 Figure 3.  Pooled linear regressions to predict balance of evidence (Δe) simulations.  Here the full model results for figure 6 (see Results section) are 
displayed. In Value Experiment, the full simulations of Δe replicated the pattern of results obtained in human data (confidence results), i.e., there is a flip in the sign 

of ΣValue effect over confidence between like (A) and dislike (D) frames. However, if the gaze asymmetry is removed we found the effect of ΣValue over Δe 
disappears. The results in Perceptual Experiment, most (B) and fewest (E) frames, mirror the findings in Value Experiment. 



 731 

All the uses of 𝜇 in this proof:  𝜇𝑖 is the mean of the value belief of item i; 𝜇′𝑖 is the mean of the 732 

value belief of item i, after a signal has been acquired;  𝜇𝑖1
and 𝜇𝑖2

 are the expected mean of 733 

the best and second-best items, respectively.  734 

We begin by proving Proposition 1. Recall that qualities 𝑣𝑖 are distributed independently 735 

according to a Normal distribution and that the agent knows it, thus holds a correct prior belief. 736 

Recall also that the agent has taken a sample, 𝑥𝑖 = 𝑣𝑖 + 𝜖𝑖, with 𝜖𝑖 independently and 737 

identically distributed with 𝜖𝑖 ∼ 𝑁(0, 𝜎𝜖
2). Because the prior belief is Normal, and because also 738 

the signal 𝑥𝑖 is Normally distributed around the true value, standard arguments give us that 739 

the posterior belief about 𝑣𝑖  is also Normal. Denote 𝜇𝑖 by 𝜎𝑣
2 the mean and the variance, 740 

respectively, of this posterior belief about 𝑣𝑖, for each 𝑖. Note that 𝜎𝑣
2 is the same for all 𝑖 (since, 741 

with Normal distributions, the variance of the posterior only depends on the variance of the 742 

prior and of the signal). 743 

 744 

The agent can now acquire a second signal about only one of the items and needs to decide 745 

which item. Note that, after a second signal about item 𝑖 is acquired, this will further change 746 

the belief about 𝑣𝑖. Denote by 𝜇′𝑖 the mean of this belief: that is, 𝜇′𝑖 is the mean of the belief 747 

about 𝑣𝑖 after the agent has acquired two signals about it. 748 

 749 

Recall that 𝑉(𝑖) indicates the utility that the agent expects to have after acquiring the second 750 

signal about item 𝑖. Recall also that we denote by 𝑖1 the item for which the agent has received 751 

the highest first signal, 𝑖2 the second-highest, etc. Suppose first that 𝑖 ≠ 𝑖1, that is, the second 752 

signal acquired is not about the best item. Then, there are two possibilities. First, we have that 753 

𝜇𝑖1
> 𝜇′𝑖, that is, after the second signal, the posterior mean about the quality of 𝑖, 𝜇′𝑖, is below 754 

that of 𝑖1, 𝜇𝑖1
. In that case the agent will choose 𝑖1, and receive an expected quality of 𝜇𝑖1

. If 755 

instead 𝜇𝑖1
< 𝜇′𝑖, then the agent chooses 𝑖 and has an expected quality 𝜇′𝑖 . It follows that, for 756 

𝑖 ≠ 𝑖1, we have 757 

𝑉(𝑖) = 𝑚𝑎𝑥{𝜇𝑖1
, 𝜇′𝑖}. 758 

For similar reasons, 𝑉(𝑖1) = 𝑚𝑎𝑥{𝜇𝑖2
, 𝜇′𝑖1

}. 759 

 760 

Appendix 9: Normative Model – Proof of Propositions 1 
and 2 
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When the agent needs to decide which item to acquire a second signal about, however, the 761 

second signal has not been observed yet: we thus need to compute the expectation of 𝑉(𝑖). 762 

In order to compute this, the agent needs to form a belief about what will be the value of 𝜇′𝑖 763 

before acquiring the second signal about 𝑣𝑖 (but after acquiring the first signal). Such belief 764 

must again be normally distributed, and have mean 𝜇𝑖.
1 Denote by 𝜃 the variance of this belief; 765 

again, this is the same for all 𝑖s. Thus, 𝜇′𝑖 ∼ 𝑁(𝜇𝑖, 𝜃). 766 

 767 

We are now ready to prove the following claims. 768 

 769 

Claim 1. 𝐸[𝑉(𝑖1)] = 𝐸[𝑉(𝑖2)]. 770 

Proof. Recall that we have, for 𝑖 ≠ 𝑖1, we have 𝑉(𝑖) = 𝑚𝑎𝑥{𝜇𝑖1
, 𝜇′𝑖} and 𝜇′𝑖 ∼ 𝑁(𝜇𝑖 , 𝜃). This 771 

means that the belief about 𝑉(𝑖), for 𝑖 ≠ 𝑖1, coincides with 𝑁(𝜇𝑖 , 𝜃) for values above 𝜇𝑖1
, but 772 

has a mass point at 𝜇𝑖1
 equal to the probability that 𝑁(𝜇𝑖 , 𝜃) is below 𝜇𝑖1

. If we denote by 𝑓𝜇 773 

the Probability Density Function of 𝑁(μ, 𝜃), it follows that we have   774 

𝐸[𝑉(𝑖2)] = 𝜇𝑖1
∫ 𝑓𝜇𝑖2

(𝑥)
𝜇𝑖1

−∞

𝑑𝑥 + ∫ 𝑥
+∞

𝜇𝑖1

𝑓𝜇𝑖2
(𝑥)𝑑𝑥. 775 

Recall also that 𝑉(𝑖1) = 𝑚𝑎𝑥{𝜇𝑖2
, 𝜇′𝑖1

}. The belief about 𝑉(𝑖1) coincides with 𝑁(𝜇𝑖1
, 𝜃) above 776 

𝜇𝑖2
, but has a mass point at 𝜇𝑖2

 equal to the probability that 𝑁(𝜇𝑖 , 𝜃) is below 𝜇𝑖2
. Then, 777 

𝐸[𝑉(𝑖1)] = ∫ 𝜇𝑖2

𝜇𝑖2

−∞

𝑓𝜇𝑖1
(𝑥)𝑑𝑥 + ∫ 𝑥

+∞

𝜇𝑖2

𝑓𝜇𝑖1
(𝑥)𝑑𝑥, 778 

Note that by construction we have 779 

𝜇𝑖1
= ∫ 𝑥

𝜇𝑖2

−∞

𝑓𝜇𝑖1
(𝑥)𝑑𝑥 + ∫ 𝑥

+∞

𝜇𝑖2

𝑓𝜇𝑖1
(𝑥)𝑑𝑥. 780 

It follows that  781 

𝐸[𝑉(𝑖1)] − 𝜇𝑖1
= ∫ (𝜇𝑖2

− 𝑥)
𝜇𝑖2

−∞

𝑓𝜇𝑖1
(𝑥)𝑑𝑥 (Eq. 1) 

and  782 

𝐸[𝑉(𝑖2)] − 𝜇𝑖1
= ∫ (𝑥 − 𝜇𝑖1

)
+∞

𝜇𝑖1

𝑓𝜇𝑖2
(𝑥)𝑑𝑥. (Eq. 2) 

But we also know that 783 

∫ (𝜇𝑖2
− 𝑥)

𝜇𝑖2

−∞

𝑓𝜇𝑖1
(𝑥)𝑑𝑥 = ∫ (𝑥 − 2𝜇𝑖1

+ 𝜇𝑖2
)

+∞

2𝜇𝑖1−𝜇𝑖2

𝑓𝜇𝑖1
(𝑥)𝑑𝑥 = ∫ (𝑥 − 𝜇𝑖1

)
+∞

𝜇𝑖1

𝑓𝜇𝑖2
(𝑥)𝑑𝑥. 784 

Together with Eq. 1 and 2, this proves the claim. ∎ 785 

 
1This is because, of course, the expectation that the agent holds about the posterior mean 
before receiving the signal must be centered at the prior mean, which in this case is 𝜇𝑖. 
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 787 

Claim 2. If N>2, 𝐸[𝑉(𝑖2)] > 𝐸[𝑉(𝑖𝑗)] for all 𝑗 > 2. 788 

Proof. Recall that, for 𝑖 ≠ 𝑖1, we have 𝑉(𝑖) = 𝑚𝑎𝑥{𝜇𝑖1
, 𝜇′𝑖}, where μi

′ ∼ 𝑁(𝜇i, 𝜃). It follows that 789 

the beliefs about both 𝑉(𝑖2) and 𝑉(𝑖𝑗) (held before the second signal is acquired) has support 790 

[𝜇𝑖1
, ∞). Denote by 𝐹𝑖 the Cumulative Density Function (CDF) of this belief. To prove the claim, 791 

we show that 𝐹𝑖2
 First Order Stochastically Dominates 𝐹𝑖𝑗

 for all 𝑗 > 2,2 while the converse is 792 

not true: that is, we aim to show that for all 𝑥 in the support, 𝐹𝑖2
(𝑥) ≤ 𝐹𝑖𝑗

(𝑥), strictly for some 793 

x. This implies 𝐸[𝑉(𝑖2)] > 𝐸[𝑉(𝑖𝑗)]. 794 

 795 

Let  𝛿 =: 𝜇𝑖2
− 𝜇𝑖𝑗

 and note that we have 𝛿 > 0 and that 𝑁(𝜇𝑖2
, 𝜃)(𝑥 + 𝛿) = 𝑁 (𝜇𝑖𝑗

, 𝜃) (𝑥) for all 796 

𝑥 ∈ ℝ. Since 𝑉(𝑖) coincides with 𝜇𝑖′ whenever that lies above 𝜇𝑖1
 and since 𝜇𝑖′ ∼ 𝑁(𝜇i, 𝜃), it 797 

follows that, for all 𝑥 > 𝜇𝑖1
, we have (1 − 𝐹𝑖𝑗

(𝑥)) = (1 − 𝐹𝑖2
(𝑥 + 𝛿)): the probability that 𝐹𝑖𝑗

 798 

assigns to 𝑉(𝑖𝑗) being 𝑥 or higher is the same that 𝐹𝑖2
 assigns to 𝑉(𝑖2) being 𝑥 + 𝛿 or higher. 799 

Then, 𝐹𝑖𝑗
(𝑥) = 𝐹𝑖2

(𝑥 + 𝛿). Because CDFs are increasing and 𝛿 > 0, then 𝐹𝑖2
(𝑥) ≤ 𝐹𝑖2

(𝑥 + 𝛿), 800 

thus 𝐹𝑖2
(𝑥) ≤ 𝐹𝑖𝑗

(𝑥) for all 𝑥 > 𝜇𝑖1
. Moreover, notice that we must have 801 

𝐹𝑖2
(𝜇𝑖1

) = 𝑁(𝜇𝑖2
, 𝜃)([−∞, 𝜇𝑖1

]) < 𝑁 (𝜇𝑖𝑗
, 𝜃) ([−∞, 𝜇𝑖1

]) = 𝐹𝑖𝑗
(𝜇𝑖1

). 802 

That is, 𝐹𝑖2
 assigns to values below 𝜇𝑖1

 a lower probability than 𝐹𝑖𝑗
 does. It follows that for all 803 

𝑥 in the support [𝜇𝑖1
, ∞),we have 𝐹𝑖2

(𝑥) ≤ 𝐹𝑖𝑗
(𝑥), strictly for some. Thus, 𝐹𝑖2

 First Order 804 

Stochastically Dominates 𝐹𝑖𝑗
 for all 𝑗 > 2, while the converse is not true. The claim follows.∎ 805 

 806 

The two claims together prove Proposition 1.  807 

 808 

The proof of Proposition 2 is identical once we replace 𝑖𝑗 by 𝑖𝑁+1−𝑗for 𝑗 = 1, … , 𝑁. Intuitively, 809 

the problem of maximizing the expected utility of the remaining items is strategically equivalent 810 

to the problem of choosing the lowest item, which, in turn, is symmetric to the problem of 811 

choosing the best item. 𝑄𝐸𝐷. 812 

 813 

 
2Recall that a distribution F first order stochastically dominates another distribution G if for all 
x, the probability that F returns at least x is not below the probability that G returns x or 
more. 
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