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12 Abstract
13 Recent research has established that humans can extract an average perceptual feature over briefly presented arrays of visual
14 elements or the average of a rapid temporal sequence of numbers. Here we compared the extraction of the average over briefly
15 presented arrays, for a perceptual feature (orientations) and for numerical values (1–9 digits), using an identical experimental design
16 for the two tasks. We hypothesized that the averaging of numbers, more than of orientations, would be constrained by capacity
17 limitations. Arrays of Gabor elements or digits were simultaneously presented for 300 ms and observers were required to estimate
18 the average on a continuous response scale. In each trial the elements were sampled from normal distributions (of various means)
19 and we varied the set size (4–12). We found that while for orientation the averaging precision remained constant with set size, for
20 numbers it decreased with set size. Using computational modeling we also extracted capacity parameters (the number of elements
21 that are pooled in the average extraction). Despite marked heterogeneity between observers, the capacity for orientations (around
22 eight items) was much larger than for numbers (around four items). The orientation task also had a larger fraction of participants
23 relying on distributed attention to all elements. Our study thus supports the idea that numbers more than perceptual features are
24 subject to capacity or attentional limitations when observers need to evaluate the average over an ensemble of stimuli.
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26

27 Introduction

28 Research over the last two decades indicates that human ob-
29 servers can rapidly extract the average of a perceptual feature
30 over sets of visual objects, even when they cannot discriminate
31 if an individual item in the display was presented ( Ariely, 2001;
32 Chong & Treisman, 2003; Chong & Treisman, 2005; Dakin,
33 2001; Parkes, Lund, Angelucci, Solomon, & Morgan, 2001;
34 Robitaille & Harris, 2011). For example, humans can evaluate
35 the average size of a set of circles presented simultaneously, with
36 an accuracy that does not decrease as the set contains more
37 elements (Ariely, 2001; Chong& Treisman, 2005) or is present-
38 ed for a shorter duration (Chong & Treisman, 2003). This aver-
39 aging ability has been demonstrated even in situations where the
40 discrimination of the presence of individual elements in the array
41 appears at chance (Ariely, 2001). This capacity appears to

42extend from simple visual attributes – such as size, orientation,
43and spatial position – to more complex properties such as emo-
44tional expression (Haberman & Whitney, 2011). Moreover, the
45extraction of the average appears to take place automatically or,
46at least, without “intention,” as it occurs in parallel (Chong &
47Treisman, 2005) and affects judgments of memory, in which the
48set-average is task-irrelevant (Khayat & Hochstein, 2018).
49Another type of stimulus in which ensemble perception has
50been suggested is symbolic numbers (Brezis, Bronfman,
51Jacoby, Lavidor, & Usher, 2016; Brezis et al., 2015, 2018;
52Corbett Q2, Oriet, & Rensink, 2006; Vanunu, Hotaling, &
53Newell, 2020; Sato & Motoyoshi, 2020; Van Opstal et al.,
542011; Vandormael, Herce, Balaguer, Li, & Summerfield
55(2017); Spietzer et al., 2017). Such stimuli are thought to
56automatically activate a set of analog numerosity representa-
57tions (Nieder Q3et al., 2002; Nieder &Miller, 2003), as indicated
58by well-known distance and magnitude effects (Dehaene,
59Dupoux, & Mehler, 1990; Moyer & Landauer, 1967) and
60numerical Stroop effects (Henik Q4& Tzelgov, 1982). Studies
61of numerical averaging have shown that human observers also
62have a remarkable ability to identify and average symbolic
63numbers even under stringent processing constraints. For
64example, Brezis et al. (2015, Exp. 3) presented observers with
65a sequence of four to 16 two-digit numbers at a rate of ten
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66 items/s, and asked participants to indicate the average on a
67 continuous scale. The results show that the estimation preci-
68 sion (the RMSD) improved with the length of the sequence,
69 indicating that observers did not use only a limited sample of
70 the sequence. These results were accounted for by a
71 population-pooling mechanism (in which encoding noise
72 would average out over items).
73 In a few other studies it has been shown that observers can
74 extract numerical information from arrays of numerical symbols
75 presented simultaneously. For example, CorbettQ5 et al. (2006)
76 have shown that observers are able to discriminate between
77 two circular arrays of six digits (comprising 2s and 5s), presented
78 simultaneously (for as short as 80 ms), the one that had a higher
79 average (more 5s) with an accuracy exceeding 80% (Exp. 1).
80 Critically, this discrimination was faster and more accurate with
81 arrays made of the 2 and 5 symbols than with p and q symbols,
82 and this speedup only took place when the numerical meaning
83 could be used as a basis for the classification task (Exp. 3).
84 Finally, using a dual-task methodology, the authors have shown
85 that this ability requires central attention (Exp. 5). This study thus
86 demonstrates that numerical information is rapidly extracted
87 from arrays of numbers, at least when these arrays are relatively
88 simple. However, this very specific set of stimuli makes it pos-
89 sible for observers to adopt a strategy that might not involve
90 computing of an average over all elements.1 Situations involving
91 more complex arrays remain to be investigated, as they might
92 help uncover the computational algorithms used by observers to
93 evaluate an average over items.
94 Two recent studies have taken this approach, using larger
95 arrays of two-digit numbers presented simultaneously (for up to
96 4–5 s) and asking participants to decide whether the average
97 was smaller or higher than a reference (Vandormael et al.,
98 2017; Vanunu et al., 2020). In these studies, the observers’
99 accuracy improved with presentation time, with the distance
100 of the average from the reference, andwith sets involving lower
101 variance. The two studies differed, however, in their conclusion
102 about the algorithm used to carry out the task: whereas
103 Vandormael et al. (2017) found robust-averaging – an algo-
104 rithm that gives less weight to outliers, Vanunu et al. (2020)
105 found on the contrary that extreme values received equal or
106 higher weights. Although the reasons for this discrepancy are
107 still unclear, at least in both cases participants relied on some
108 items more than on others. This finding relates to the notion of
109 capacity that has been put forward in early cognitive models of
110 attention and working memory, and that has also been part of
111 recent theoretical accounts of ensemble perception.
112 In the context of extracting a set-average, capacity can be
113 defined as the number of items pooled together in the estimation

114(Alik Q6et al., 2013; Dakin, 2001; Solomon, May, & Tyler, 2016).
115Whereas this definition assumes an all-or-none selection of some
116items and not others, one alternative view involving distributed
117attention can be considered. In this view, all the elements con-
118tribute to the estimation of the average, each element receiving a
119fraction of the attentional resources available, which becomes
120smaller when there are more elements in the array (Eriksen Q7&
121StJames; Baek and Chong, 2020 Q8; Chong& Treisman, 2005). As
122shown by Baek and Chong (2020a), a signature of this model is
123an improved precision with set size (see also Brezis et al., 2015,
124for the case of sequential presentation).
125The appeal of the notion of capacity or distributed attention-
126al resources is that these notions are domain general, and can be
127compared across observers and across tasks. Surprisingly,
128however, and despite the fact that many studies have
129demonstrated that observers form ensemble representations
130over various dimensions, how these dimensions compare, for
131example in terms of the capacity, is not clear. In a recent study,
132Haberman, Brady, and Alvarez (2015) found that individual
133differences in performances (mean absolute errors when iden-
134tifying the average over a set) were correlated between two
135low-level features such as orientation and color, but uncorrelat-
136ed when comparing a low-level feature to a higher-level feature
137such as facial expression. This suggests that ensemble repre-
138sentations for different features might operate with different
139levels of performance, although capacity or distributed atten-
140tion was not specifically assessed in this study.
141Here, we hypothesize that the capacity with which observers
142build an average representation might depend on how much
143attentional and visual working memory resources are involved
144in extracting and manipulating the task-relevant feature. For in-
145stance, we expect that limitations in distributed attention or visual
146working memory capacity (Cowan, 2001; Luck & Vogel, 1997)
147will affect the averaging of symbolic numbers (as suggested by
148Corbett Q9et al., 2006) more than of simple visual properties like
149orientation, which can be processed pre-attentively (Braun &
150Sagi, 1991; Treisman&Gelade, 1980) andwhich engage group-
151ing and the formation of a holistic Gestalt (Hess & Field, 1999;
152Kovács & Julesz, 1993). While there is some debate on the
153capacity with which orientation can be averaged in a brief array
154(Baek&Chong, 2020a; Dakin, 2001; Robitaille &Harris, 2011;
155Solomon, May, & Tyler, 2016; see review in Baek & Chong,
1562020b), we expect that capacity would be reduced for numerical
157stimuli, which are likely to require more attentional resources
158due to their higher visual complexity.
159The aim of our study was to contrast averaging of numer-
160ical and visual oriented elements, within the same observers,
161and using an identical experimental design (with the same
162visual display and response procedure for these two dimen-
163sions). By manipulating the size of the item-set across trials,
164we aimed to evaluate how performance changes with set size,
165and reveal the capacity of the integration process. For both
166dimensions (numbers vs. orientations) we asked participants

1 One alternative is that the observers estimate if there are more 2s than 5s, but
not by how much (which would allow to decide that the average is higher or
lower that 3.5, but not by how much). Alternatively, observers may estimate the
average, but this could be based on aVWMcapacity sample of about four items.
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167 to report an estimation of the average on a continuous scale, in
168 order to encourage the integration of all items, and minimize
169 the use of non-averaging heuristics that might arise in tasks
170 based on a comparison to a reference. We expect that in the
171 numerical averaging task, participants will be more accurate
172 with smaller arrays. By contrast, in the orientation averaging
173 task we expect either a fixed (or improved) precision with the
174 set size of the array, as a result of averaging the encoding
175 noise. To validate these conclusions, we used computational
176 modeling to fit the data with two models, namely (1) the
177 limited-capacity (subsampling) model (Alik et al., 2013;
178 Solomon, May, & Tyler, 2016) and (2) the distributed atten-
179 tion or ‘zoom lens’ model (Baek & Chong, 2020a), and ex-
180 tracted the capacity or attention parameters for the two tasks.
181 Finally, we examined the weights given to the mid-range and
182 extreme values and compared them across the tasks
183 (Vandormael et al., 2017; Vanunu et al., 2020).

184 Experiment

185 The experiment briefly presented arrays of numbers (digits
186 1–9) or oriented elements (Gabors) of various set sizes (from
187 four to 12) and required participants to estimate the numerical
188 or orientation average on a continuous scale. We used an
189 estimation on a continuous scale rather than a binary decision
190 relative to a reference, as this minimizes the reliance on some
191 heuristics, such as counting the number of elements higher
192 than the reference, or even the number of extreme (high- vs.
193 low-value) elements. Our main focus is the dependency of the
194 estimation precision on set size in the two tasks.

195 Methods

196 Participants

197 Eighteen healthy adult volunteers with normal or corrected-to-
198 normal vision participated in this study. All volunteers gave
199 written informed consent to participate in this study. All pro-
200 cedures and experimental protocols were approved by the
201 ethics committee of the Psychology Department of Tel Aviv
202 University (Application 743/12). All experiments were carried
203 out in accordance with the approved guidelines. Due to the
204 COVID-situation, testing conditions were restricted. We of-
205 fered our participants the option to be tested (for an equivalent
206 of $15) in the lab under special safety COVID19 guidelines,
207 or to run the experiment at home (same pay) from their own
208 computer (to do this they needed to have Matlab installed on
209 their computer). Ten participants were tested in the lab and
210 eight were tested at home.

211Stimuli

212In the lab, displays were generated by an Intel I7 personal com-
213puter attached to a 24-in. Asus 248qe monitor with a 144-Hz
214refresh rate, using 1,920 × 1,080 resolution graphics mode. Due
215to the Covid19 situation, eight participants were tested at home
216using their own personal computers, but the experimental code
217was designed so as to detect themonitor’s resolution and present
218the stimuli with the same relative size. All participants were
219approximately at a distance of 60 cm from the screen.
220The stimulus was an array of four, eight, or 12 elements
221(Gabor patches or numbers, depending on the task), randomly
222located on a gray background, within an invisible 5 × 6 grid
223(each cell was 77 × 96 pixels), with a restriction of no two
224horizontally adjacent elements and no element in the cells just
225above and below fixation (see Fig. 1a and b). Numbers were
226integers between 1 and 9, presented in white in David font size
22725. Gabor patches were 200 pixels wide, with a spatial frequen-
228cy of 0.2 cycles per pixel and standard deviation of 20 pixels.
229Gabors' orientations varied from 42° to 138° in nine equidistant
230steps. Stimuli were generated using Psychtoolbox for Matlab.

231Trial procedure

232Each trial began with the onset of a central fixation dot (1 s)
233followed by the stimulus array (numbers or Gabors), which
234remained on the screen for 300 ms. After the offset of the
235array, participants were instructed to report the numbers' av-
236erage (number task) or the Gabors' average angle (orientation
237task) on a semicircular scale (an arc from 30° to 150°), using
238their mouse. Themouse cursor was always at the middle of the
239circle (red fixation dot) at the beginning of the scale display
240and thus it had an equal distance from each point of the scale
241(see Fig. 1). The scale labels were numbers from 1 to 9 (num-
242ber task) or oriented lines from 30° to 150° (orientation task).
243The participants had a 5-s deadline to respond.

244Design

245Each participant completed both the orientation and the num-
246ber averaging tasks, in separate blocks of 360 trials each, in an
247order counterbalanced across participants. Set sizes (four,
248eight, 12 elements) were randomly interleaved across trials.
249Numbers were drawn randomly from one of three Gaussian
250distributions with means of 3.5, 5, or 6.5 and standard devia-
251tion of 1.5. The Gabors’ orientations were drawn from
252Gaussian distributions with means of 72°, 90°, and 108° rel-
253ative to horizontal, and SD of 18°. The positions of numbers
2541–9 on the response scale corresponded to orientations from
25542° to 138°. Due to a coding error, in four (of the 18) partic-
256ipants the Gaussian distribution of the Gabors were located at
25776.6°, 96.6°, and 116.6°, generating a small tilt of the overall
258distribution. This coding error was corrected in the other
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259 participants. Since responses are made on a continuous scale
260 and the actual deviation can be correctly extracted, all partic-
261 ipants were included in the analysis.

262 Results

263 For simplicity and normalization between the two tasks we
264 computed the different accuracy measurements in the orienta-
265 tion task after we transformed the orientation angles to num-
266 bers of 1–9, based on the mappings above.

267 Averaging precision

268 We used two measures to quantify participants' precision in
269 the averaging tasks: First, we looked at the Pearson correlation
270 across trials between the real and estimated averages of the
271 array in each trial (see Fig. 2 for an example participant). The
272 average correlation was high both for the orientation task (av-
273 erage r = .72, SD = 0.1) and for the number task (average r =
274 .80, SD = 0.08). Note that in both tasks we observed regres-
275 sion to the mean, by which responses were biased towards the
276 center of the scale. Second, we computed the root mean square
277 deviation (RMSD) between the real averages and the partici-
278 pants' responses across trials (see Fig. 3a). To obtain a chance-
279 level baseline for this measure, we evaluated the RMSD for
280 randomly shuffled responses across trials, both for the orien-
281 tation and the number tasks. We found the actual RMSD was
282 significantly lower (more precise) than the shuffled version
283 (orientation task: actual RMSD = 1.00, shuffled RMSD =

2841.84, t(17) = 16.6, p < .001. number task: actual RMSD =
2850.86, shuffled RMSD = 1.87, t(17) = 25.9, p < .001).
286In order to test the main effect of set size and its interaction
287with task, we carried out a two-way repeated-measures
288ANOVA (set size × task) with RMSD as the dependent vari-
289able. There was a significant interaction between the effects of
290set size and task, F(2,34) = 6.5, p<.01. A separate ANOVA for
291each task revealed a significant set size effect for the number
292task, F(2,34)=13.8, p < .001, but not for the orientation task;
293F(2,34) = 0.88, p = .68. Post hoc comparison using Holm's test
294in the number task showed that RMSD was significantly low-
295er (more precise) for four items than for eight and 12 items. In
296sum, in the number task participants were less accurate as set
297size increased, as opposed to the orientation task in which set
298size did not influence precision (see Fig. 3a).

299Reaction times

300To evaluate whether the decrease in performance with set size
301for numbers might be related to a potential speed-accuracy
302tradeoff, we also looked at response times (Fig. 3b). We re-
303peated the same two-way repeated-measures ANOVA (set
304size × task) now with median response time (RT) as the de-
305pendent variable. There was a significant interaction between
306the effects of set size and task on RT, F(2,34) = 7.7, p < .01. A
307separate ANOVA for each task revealed a significant set size
308effect for the number task, F(2,34) = 10.25, p < .001, but not
309for the orientation task, F(2,34) = 2.09, p =.13. Post hoc com-
310parison using Holm’s test in the number task showed that

Fig. 1 Representative trial stimuli of each condition (set size 8). (a)
Numbers condition. (b) Gabors condition. (c) Timeline diagram of a
single trial. Each trial began with a fixation point for 1 s, followed by

the array and ended with the response scale display. Trials end when the
participant enters a response or after a 5-s deadline
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311 four-items RT was significantly slower than eight- and 12-
312 items RT (see Fig. 3b).
313 In order to understand if the slowdown in the number-
314 averaging task at the set size of four can account for the improved
315 precision in this condition, we computed for every participant the
316 correlation between absolute errors (RMSD) and RTs across
317 trials, separately for each set size and task. We reasoned that if
318 such a speed-accuracy tradeoff occurred, then longer RTs would
319 be associated with lower errors, resulting in negative correlations
320 between errors and RTs. However, no negative correlations were
321 found at the group level (see Fig. 1 in the Appendix for the
322 distribution of correlation coefficients across participants). In par-
323 ticular, for the numerical averaging task, the correlations were
324 close to zero (for set sizes four, eight, and 12 the mean r values

325were -.012, -.004, and .042, respectively, with SDs 0.17, 0.14,
326and 0.10, across participants). For the orientation averaging task
327we found small (but statistically significant) positive correlations
328at set sizes four (mean r = .092, SD = 0.15, t(17) = 2.59, p=.019)
329and set size 12 (mean r = .057, SD= 0.084, t(17) = 2.88, p=.010).
330To further discard the possibility of a speed-accuracy tradeoff for
331the set size of four in the number task, we eliminated the 20%
332slowest trials in that condition, so that the remaining trials had a
333median RT that was the same as the set size eight condition, and
334we examined RMSD in this RT-equivalent dataset. As expected
335from the null correlation between RT and absolute errors, this
336exclusion of slow trials did not affect the results regarding
337RMSD. Critically, the interaction between set size and task was
338maintained (F(2, 34) = 6.13, p = .011).

Fig. 2 (a) Correlation between the real average and the estimated average
of a representative participant in the number task. (b) Correlation between
the real average and the estimated average of a representative participant

in the orientation task. In both panels, each dot corresponds to a single
trial, and the red line represents the regression of the estimated average
against the actual average across trials

Fig. 3 (a) Root mean square deviation as a function of set size. In the
orientation condition (blue) participants were not impacted by set size. In
contrast, the number condition (red) shows that participants' performance
deteriorated as set size increased. (b) Median response time (RT) as a
function of set size. In the orientation task (blue) there was no difference

in RT between the different set sizes. In the number task (red) responses
were slower in the four-items condition compared to the eight- and 12-
items conditions. In both panels, errors bars represent the mean and its
standard error across participants

Atten Percept Psychophys

JrnlID 13414_ArtID 2192_Proof# 1 - 14/11/2020



AUTHOR'S PROOF

U
N
C
O
R
R
EC
TE
D
PR
O
O
F

339 Summary and discussion

340 While the participants were able to carry out both tasks relatively
341 well (as indicated by correlations between real and estimated
342 values higher than .70), the precision of their estimation showed
343 a different dependency on the set size of the array in the two
344 tasks. For orientation-averaging, set size did not affect either the
345 precision or the mean RT, suggesting a parallel process (Ariely,
346 2001Q10 ; Chong&Treisman, 2005; Robitaille &Harris, 2011). For
347 the numerical averaging on the other hand, both the precision
348 and the RT decreased with set size. One possibility is that for
349 small arrays (four digits), participants could have attempted to
350 carry out the estimation by using a symbolic computation strat-
351 egy, a strategy that they gave up on with larger arrays (Brezis
352 et al., 2015). The null correlation between RMSD and RT ob-
353 served in this condition indicates that this extra time did not help
354 the participants to improve their estimation precision.
355 To conclude, we see that the ability of the participants to
356 average larger arrays of numbers appears more limited, as the
357 precision of the estimation is reduced with the size of the array.
358 This is what would be expected if capacity (i.e., the number of
359 elements the subjects can pool from) was reduced in the numer-
360 ical task. In the next section we apply computational modeling
361 in order to extract the capacity and attention parameters of the
362 two tasks, and to examine additional biases, such as the weight
363 given to in- or outlying elements (de Gardelle & Summerfield,
364 2011; Vandormael et al., 2017; VanunuQ11 et al., 2019).

365 Computational analysis

366 We applied two computational models to account for the data
367 across all trials and participants, in both tasks. The first model
368 is a version of the limited-capacity (subsampling) model (AlikQ12

369 et al., 2013; DakinQ13 et al., 2001; Solomon, May, & Tyler,
370 2016). This model assumes that out of N items presented, only
371 M items are pooled up to generate the average-estimate. There
372 are three sources of noise in this estimate. The first one is the
373 sampling noise caused by subsampling (M out of N) elements.
374 The second is an encoding noise, which is averaged out with
375 M. The last component is a late-noise (this may include a
376 motor component), which is not affected by M or N.

MeanEstimated ¼ aþ b
∑M

i¼1xi þ εe
M

� �

þεm; εe∼N 0;σ2
e

� �
and εm∼N 0;σ2

m

� � ð1Þ

377378
379

380 The model is summarized by Eq. 1, whereM is the number
381 of sampled items out of the array, xi is the ith item that was
382 sampled, εe is the encoding noise, and εm is the motor noise. In
383 this equation, a and b correspond to the intercept and slope
384 parameters by which the internal estimation is mapped onto
385 the external response-scale. Note that b<1 would induce a

386regression to the mean, which appears in the data (Fig. 2),
387andwhich is adaptive when observers face uncertainty but have
388prior knowledge about the distribution of the stimuli (Jazayeri
389& Shadlen, 2010; Anobile, Cicchini, & Burr, 2012).2

390The second model is a version of the zoom lens model
391(Baek & Chong, 2020). The model assumes that while all
392visual elements contribute to the averaging estimation, they
393are subject to distributed attentional resources, which can vary
394from a sharp focus (for small arrays) to a broad one (for larger
395arrays). The precision of the processing is then in inverse
396proportion to the area of focus, similar to the zoom lens of a
397camera. As a result, the model assumes that an increase in set
398size leads to an increase in encoding noise for each item. There
399are also three sources of noise in this model. The first two are
400encoding noise and late noise, similar to the previous model.
401The third one is the attention parameter (A), which is a noise-
402reduction factor multiplied to encoding noise.
403

MeanEstimated ¼ aþ b
∑n

i¼1xi þ εe
n

� �
þ εm;

εe∼N 0;σ2
e

� �
; εm∼N 0;σ2

m

� �
s

ð2Þ

404405

406

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n−1þ Að Þ2

n3
σ2
e þ σ2

m

s
ð3Þ

407408
409

410This model is summarized by Eqs. 2 and 3, where xi is the
411ith item that in the array, n is the set size of the array, εe is the
412encoding noise, εm is the motor noise, A is the attention pa-
413rameter, and a and b correspond to the intercept and slope
414parameters by which the internal estimation is mapped onto
415the external response-scale.
416Since fitting five parameters is computationally challeng-
417ing (from a model recovery perspective), we carried out the
418model fits in two steps. First, we conducted a simple regres-
419sion predicting the trial-by-trial response of each participant
420from the sequence-average, to determine the a and b parame-
421ters for each participant. We then fixed those parameters and
422we fitted the three noise parameters,M, εe, εm, or A, εe, εm. For
423the zoom lens model, the predicted distribution of the estimat-
424ed mean is Gaussian around the actual average and with a
425variance determined by Eq. 3. For the sampling model, we
426resorted to simulations. For each trial we computed the ex-
427pected distribution of the estimated mean over the array, given
428the parameters of the model. In both models, from the predict-
429ed distribution (in each trial) we obtained the log-likelihood of
430the response of the observer in that trial. These log-likelihoods
431were accumulated across trials and the model parameters were
432optimized to maximize the total log-likelihood (see Tables 1
433and 2 in the Appendix for parameters AIC/BIC Q14) Fig. 4.

2 We also carried out model fitting without the a,b parameters, but the results
were less good in terms of AIC/BIC measures, and they provide similar con-
clusions. So we only report the model comparisons that include intercept and
slopes parameters.
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434 Model comparison

435 We compared the capacity/sampling and the zoom lens model
436 to test which of them accounts better to the data in each task.
437 The models have the same number of parameters so we com-
438 pared directly the log-likelihoods. Figures 5 and 6Q15 shows the
439 difference in log-likelihood (zoom lens minus sampling model,
440 such that positive values are in favor of the sampling model) in
441 each task. As shown in the figure, there are very small

442differences in the model fits in the orientation task (except for
443four subjects out of 18), but there are large differences in the
444number task, where the sampling model fares significantly bet-
445ter (see Tables 1 and 2 in the Appendix for more details).
446Interestingly, all the participants for whom the sampling
447model wins over the zoom lens model are those for whom the
448fitted value of the capacity parameter, k, was very small (2 or 3;
449see Tables 1 and 2). Besides, all the participants for whom the
450capacity parameter was k = 12 in the orientation task (maximum
451value), were those for whom the zoom lens model won (see
452Tables 1 and 2). We next focused on how the capacity param-
453eters vary with the task (see Figs. 5 and 6; see Tables 1 and 2 in
454the Appendix for other parameters). Despite marked variability
455across individuals, we observed overall a higher capacity in the
456orientation task (M = 7.3, SD = 3.9) than in the number task (M
457= 3.6, SD = 1.8). The difference between the two tasks was
458statistically significant (t(17) = 3.5, p < .005). This result con-
459firms our hypothesis that when constructing their representation
460of the average over a set of items, observers integratemore items
461in the orientation task than in the number task.

462Weights of inlying versus outlying elements

463Finally, we examined the weights that participants gave to the
464different elements in the array, depending on their relative
465rank (among all elements in the array) and depending on the
466task (i.e., number or orientation). In particular, we compared
467elements falling in the middle of the sample (hereafter inlying
468elements) versus elements at the extreme (hereafter outlying
469elements). For example, for a sequence such as (2, 3, 4 5, 5, 6,
4707, 8), we considered that (2, 3, 7, 8) were outlying elements
471and that (4, 5, 5, 6) were inlying elements. For each task and
472set size, we then extracted the weights given to outlying and to
473inlying elements using the following linear regression (Eq. 2):

Fig. 4 The difference in log-likelihood between the zoom lens model and
the sampling model as a function of task (orientation vs. numbers).
Positive values indicate an advantage for the sampling model. Each dot
is an individual observer. Error bars correspond to SEM

Fig. 5 Capacity-parameter M, for each of the participants in the two tasks
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Response ¼ β0 þ βin
2

n
∑i∈InX i

� �
þ βout

2

n
∑i∈OutX i

� �

474475
476

477 with Xi the ordered samples, and In ¼〚n
4 þ 1; 3n4〛and Out

478 ¼〚1; n4〛⋃〚
3n
4 þ 1; n〛the indices for inlying and outlying ele-

479 ments, respectively.
480 We then examined how these weights varied across condi-
481 tions (Figs. 5 and 6). A 2 × 3 × 2 ANOVA (task, set size, in/
482 outliers) shows a significant triple interaction (F(2, 34) = 4.48,
483 p =.031). We thus conducted separate ANOVAs for each task,
484 to examine the effect of set size and element rank. In the
485 number task, there was only a main effect of rank, F(1, 17)
486 = 11.20, p = .004, in which participants gave more weights to
487 the outlying elements, in a similar manner across all set sizes.
488 By contrast, for the orientation task there was both a main
489 effect of set size, F(2, 34) = 23.82, p < .001, and an interaction
490 between set size and rank, F(2,34) = 6.03, p = .011. Further
491 examination of this interaction indicated that inlying elements
492 were down-weighted relative to outlying elements only for the
493 largest sets (size 12: rank effect: F(1,17) = 10.44, p = 0.005)
494 but not for smaller sets (sizes four and eight: both p > .05).

495 General discussion

496 We examined and compared the ability of observers to esti-
497 mate the average number and the average orientation of ele-
498 ments presented simultaneously for a brief (300 ms) duration.
499 Our experimental procedure required observers to make a re-
500 sponse on a continuous scale, rather than a binary decision,
501 and our results indicated that in both tasks the observers were

502able, despite the presence of a regression to the mean compo-
503nent, to make good estimations (see Fig. 2).
504The critical difference between the two tasks was the impact
505of the set size on the precision with which the average was
506estimated. We expected that the perception of numerical sym-
507bols would depend more on attentional and visual working
508memory resources, compared with the perception of oriented
509elements, which can generate a more holistic (texture) process
510(Dakin, 2001; Chong & Treisman, 2005; Robitaille & Haris,
5112011). We thus expected to find a higher capacity in the pooling
512of orientations compared with the pooling of numbers. These
513predictions were confirmed at the group level, using estimates of
514capacity based on a sampling model of averaging. In addition,
515we also compared this model to the (distributed attention) zoom
516lens model of averaging, which instead of sampling involved
517distributed attention over all elements (Baek Q16& Chong, 2020b).
518While in the orientation task the zoom lens and the sampling
519models were about equal in their fit performance, in the numer-
520ical task the sampling model provided a better fit. Consistent
521with this, the estimation precision decreased with set size only in
522the numerical task and the extracted capacity parameter M was
523lower for the numerical task (average M = 3.7), compared to the
524orientation task (average M = 7.3).
525In addition to these group differences, we also observed a
526large heterogeneity in both tasks. While some participants
527showed maximal capacity in the sampling model (M values
528that approached the maximum set size of 12) and RMSD
529decreasingwith set size (as a result of efficient pooling), others
530showed low capacity (values of M = 2) and RMSD increasing
531with set size. This type of heterogeneity was previously re-
532ported for the orientation averaging (Solomon, May, & Tyler,
5332016). One possibility discussed by Solomon et al. (2016) is
534that the efficiencymay be a function of expertize with the task.

Fig. 6 Regression weights for inlying and outlying elements within each array, separately for the two tasks and the different set sizes. Error bars
represents the mean and its standard error across participants
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535 Our finding that orientation averaging is more efficient than
536 averaging of symbolic numbers is consistent with this possi-
537 bility: the visual system is arguably more expert in extracting
538 orientations from Gabor patches than in extracting the quan-
539 tity associated with a symbolic number. Could the inter-
540 individual variability in efficiency observed in our data also
541 relate to variations in expertise across participants?
542 Unfortunately, we cannot address this question directly with
543 our protocol, but there was room for variations in expertise
544 across participants, given that the amount of training our par-
545 ticipants received before engaging in the main experiment was
546 minimal (360 trials per task). In the case of averaging of sym-
547 bolic numbers in particular, one could further speculate that
548 familiarity with mathematics (e.g., due to studies, or to work-
549 related or other activities involving mental calculus) may af-
550 fect the efficiency with which participants compute an average
551 over a set of visually presented numbers. Future studies are
552 needed to further investigate this issue.
553 Our capacity estimate for the orientation averaging task is
554 somewhat higher that reported by Solomon et al. (2016) as
555 well as in some other studies (see, e.g., Table 1 in Solomon
556 et al., 2016). While as discussed above there was marked
557 heterogeneity in both studies, there are two aspects in the
558 experimental procedure that could account for potential dif-
559 ferences. First, while Solomon et al. (2016) used stimuli pre-
560 sented on a circular array, in our experiment they were pre-
561 sented in a texture type display, and random spatial positions,
562 which may enhance texture/grouping processes. Other studies
563 that used texture displays have also indicated a capacity that
564 exceeds the VWM of three to four items (Dakin, 2001;
565 Robitaille & Harris, 2011). Second, we used a continuous
566 response instead of a binary choice relative to a reference.
567 Doing this may have eliminated some non-integration strategy
568 to carry out the task, such as counting the elements higher than
569 the reference. Future work might investigate these aspects.
570 The main focus of our study was the comparison of the
571 capacity of the orientation and numerical averaging tasks.
572 Regarding this comparison, we should acknowledge one po-
573 tential limitation of our experimental methodology, in that we
574 did not equate the visual characteristics of the stimuli between
575 the number task and the orientation task. It is possible that the
576 orientation stimuli may have benefited from a greater preci-
577 sion in terms of visual encoding than the number stimuli.
578 Indeed, our number stimuli involved higher spatial frequency
579 content (sharp edges), which may have been degraded to-
580 wards the periphery of the stimulus display. Fortunately, our
581 computational modeling allowed us to estimate encoding
582 noise for both the number task and the orientation task, and
583 it appears that irrespective of the model considered (sampling
584 vs. zoom lens), this early noise was actually higher for the
585 orientation task than in the number task (see Tables 1, 2, 3
586 and 4 in the AppendixMaterial), whichwe argue alleviates the
587 concern. Further research may, however, better address this

588issue, by measuring the precision of the representation of sin-
589gle items, in addition to the averaging task.
590The lower capacity in the numerical averaging task indicates
591that for most participants the estimation is based on sampling
592only a few of the elements. Based on previouswork (deGardelle
593& Summerfield, 2011; Vandormael et al., 2017; Vanunu et al.,
5942020), we sought to investigate which elements received more
595weight. The inlying/outlying analysis shown in Figs. 5 and 6
596indicates that those elements are more likely to be extreme ele-
597ments. Note that when a limited number of samples (say, two)
598can be used for the averaging process, the precision of the esti-
599mation is higher when the extreme ones are selected, compared
600with a random selection. Thus, if these extreme elements are
601easier to detect, relying on them could be an adaptive strategy.
602This interpretation is consistent with the fact that in the orienta-
603tion task, the weight of the extreme samples exceeds the weight
604of the midrange samples, only at the largest set size (when the
605set size exceeds the capacity of the orientation-averaging esti-
606mation). While these results stand in contrast to those of
607Vandormael et al. (2017), who reported robust averaging (lower
608weights for extreme elements), they are consistent with those
609reported by Vanunu et al. (2020). We should note that these two
610studies used long presentation durations (several seconds in both
611cases) and a binary comparison with a reference, whereas our
612task involved brief displays and required an estimation on a
613continuous scale.
614The results for the numerical averaging also stand in con-
615trast to those reported in Brezis et al. (2015, 2016, 2018), in
616which the precision improved with set size, indicating pooling
617across all (or almost all elements, from four to 16). The critical
618difference, however, is that while in the present study, the
619elements are briefly displayed simultaneously, in Brezis
620et al. they were sequentially presented, resulting in less atten-
621tional resource competition between the encoding of the ele-
622ments. This suggests a framework in which while the estima-
623tion mechanism is parallel (e.g., a neural population-coding
624model in Brezis et al., 2016, 2018), the encoding of the items
625has some serial (capacity limited) component that is lower for
626symbols compared to oriented lines.
627Finally, in addition to capacity, we also examined response
628times for the two tasks. One interesting aspect was that RTs
629markedly increased when participants had to average four
630numbers, in comparison to eight or 12 numbers. Such an in-
631crease for four elements was specific to the number task, and
632did not occur in the orientation task. Thus, it might indicate
633that participants approached the number averaging task differ-
634ently with four items compared to eight or 12 items, for in-
635stance by trying to calculate the average rather than by relying
636on an intuitive estimation.We note, however, that these longer
637response times did not lead to better responses. Whether this
638change in strategy was deliberate or not and whether it may
639reflect an adaptive strategy or not, however, remains to be
640addressed. Future studies may investigate, in particular,
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641 whether participants have a good insight or not about their
642 own cognitive processes in the averaging task.

643 Appendix

644 Model fitting

645 Optimization procedure. The free parameters of the sampling
646 and zoom lens models were fitted to the data of each participant
647 separately, using maximum likelihood estimation. We carried
648 out the model fits in two steps. First, we carried out a simple
649 regression predicting the trial by trial estimate of each subject
650 from the sequence-average, to determine the a and b parameters
651 for each subject. We then fixed those parameters and we con-
652 structed an n-dimensional grid (n is the number of free param-
653 eters for each model), with the four noise parameters (in total for
654 the two models), M, εe, εm,A. M ranging from 1 to 12 with
655 increments of 1, A ranging from 0 to 1 with increments of
656 .0101, εe ranging from 0 to 1.9 with increments of 0.126 for
657 the numbers task and ranging from 0 to 3 with increments of 0.2
658 for the orientation task and εm ranging from 0 to 1 with incre-
659 ments of 0.06 for the numbers task and ranging from 0 to 2 with
660 increments of 0.13 for the orientation task. This grid was
661 searched exhaustively, and for each set of parameters, θj, the
662 likelihood was calculated based on a Gaussian probability dis-
663 tribution function:

L θ j
� � ¼ ∏N

i¼1

1

σ
ffiffiffiffiffiffi
2π

p e
−1
2

xi−μi
σð Þ2

664665
666

667 where N is the number of trials, xi is the subject’s estimated
668 average in each trial, μi is the predicted average by the model

669 excluding noise, and σ is the standard deviation such that σ

670 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
e þ σ2

m þ σ2
M

p
for the efficiency model and

671 σ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n−1þ Að Þp 2

n3σ2eþσ2m
for the Zoom lens model. We

672 also carried out model fitting without the a,b parameters and
673 compared the two fits.
674 Model selection. In order to evaluate the quantitative fits of
675 the models, we used two methods: (1) Akaike Information
676 Criterion (AIC; Akaike, 1973), and (2) BayesianQ17

677 Information Criterion (BIC; Schwarz, 1978; RafteryQ18 , 1995).
678 These selection criteria implement a trade-off between model
679 goodness of fit and complexity by penalizing additional free
680 parameters according to the following formulas:
681 AIC = -2∙LL+2∙k
682 BIC = -2∙LL + k∙log(N)
683 where LL is the log-likelihood for the best fitting parame-
684 ters, k is the number of free parameters and N is the number of
685 trials. AIC/BIC differences exceeding 10 are considered deci-
686 sive evidence in favor of the model with the lower numerical
687 values (Burnham & Anderson, 2002; Raftery 1995; see
688 Tables 1 and 2 for parameters and BIC/AIC values).
689 Fig. 7

t2:1Table 2 Comparison between the log-likelihood of the sampling model
compared to the zoom lens model in the numbers task

t2:2Subject Sampling model Zoom lens model

t2:3LL A b M Ɛe Ɛm LL A Ɛe Ɛm

t2:41 239.7 0.3 0.9 3 0.1 0.2 271.0 0.00 0.1 0.7

t2:52 337.8 1.3 0.8 6 1.8 0.1 340.5 0.62 0.8 0.8

t2:63 332.5 -0.1 1.0 2 0.3 0.3 344.7 0.00 0.1 0.9

t2:74 325.3 0.6 0.9 2 0.1 0.3 340.3 0.00 0.8 0.8

t2:85 427.8 1.0 0.8 5 0.5 0.7 431.6 0.00 0.1 0.8

t2:96 343.2 1.1 0.8 6 1.3 0.0 344.5 0.07 0.6 0.6

t2:107 422.4 0.9 0.8 2 0.4 0.1 440.2 0.00 0.3 0.8

t2:118 361.6 1.3 0.7 6 1.3 0.2 362.0 0.21 0.8 0.6

t2:129 494.0 1.0 0.8 2 0.6 0.3 509.5 0.00 0.1 1.0

t2:1310 276.0 0.3 1.0 3 0.1 0.1 301.9 0.00 0.1 0.6

t2:1411 523.2 0.5 1.0 2 0.3 0.7 532.8 0.41 1.2 1.0

t2:1512 443.6 0.6 0.9 3 0.8 0.4 448.9 0.00 0.6 0.8

t2:1613 438.8 1.0 0.8 2 0.4 0.1 449.8 0.00 0.7 0.8

t2:1714 305.5 1.1 0.8 3 0.4 0.1 307.8 0.00 0.8 0.5

t2:1815 305.9 1.1 0.9 5 0.9 0.2 316.3 0.00 0.1 0.6

t2:1916 399.0 0.9 0.8 5 0.5 0.6 407.3 0.00 0.7 0.7

t2:2017 562.0 1.6 0.7 2 0.8 0.6 567.0 0.00 0.1 1.2

t2:2118 475.6 1.7 0.6 7 1.1 0.7 476.1 1.00 0.3 0.9

The other columns show the parameters’ value in each fit

t1:1Table 1 Comparison between the log-likelihood of the sampling model
compared to the zoom lens model in the orientation task. The other
columns show the parameters’ value in each fit

t1:2Subject Sampling model Zoom lens model

t1:3LL a b M Ɛe Ɛm LL A Ɛe Ɛm

t1:41 422.9 1.19 0.84 12 2.2 0.80 422.8 0.31 3.0 0.6

t1:52 263.9 2.24 0.62 10 1.6 0.13 265.2 0.61 1.6 0.3

t1:63 442.6 1.28 0.75 6 2.6 0.40 442.7 0.30 2.2 1.0

t1:74 375.0 1.71 0.71 7 1.6 0.67 375.3 0.93 1.5 0.8

t1:85 350.4 1.2 0.78 6 1.2 0.27 352.6 0.00 0.7 0.6

t1:96 361.2 -0.03 0.98 6 1.4 0.00 361.3 0.00 1.6 0.4

t1:107 537.8 -0.02 1.1 5 2.2 0.00 538.6 0.00 1.8 0.9

t1:118 287.8 2.22 0.55 6 1 0.13 289.6 0.00 0.7 0.5

t1:129 271.5 2.74 0.46 12 0 0.53 271.1 0.00 0.3 0.5

t1:1310 446.5 -0.3 1.07 3 1 0.13 456.3 0.00 0.9 0.8

t1:1411 538.6 2.32 0.56 3 1.6 0.00 539.8 0.00 0.1 1.1

t1:1512 563.4 -0.8 1.16 12 1.2 1.07 563.2 0.02 2.2 0.9

t1:1613 438.5 1.82 0.62 12 1.2 0.67 438.2 0.01 2.0 0.5

t1:1714 260.0 2.03 0.62 12 0.8 0.40 259.0 0.00 1.5 0.2

t1:1815 390.6 3.23 0.38 12 1.8 0.27 389.9 0.16 2.2 0.0

t1:1916 433.9 2.28 0.57 3 1 0.00 440.2 0.00 0.7 0.8

t1:2017 544.2 1.57 0.65 2 1 0.00 555.4 0.00 0.5 1.1

t1:2118 491.8 1.09 0.77 3 1.2 0.27 500.1 0.00 0.1 1.0
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t4:1 Table 4 Comparison between the AIC and BIC parameters for the sampling model with the mapping parameters compared to without the mapping
parameters in the numbers task

t4:2 Subject Model with mapping parameters Model without mapping parameters

t4:3 BIC AIC a b M Ɛe Ɛm BIC AIC M Ɛe Ɛm

t4:4 1 509 489 0.30 0.92 3 0.13 0.20 506 494 3 0.38 0.00

t4:5 2 705 686 1.25 0.78 6 1.77 0.13 730 718 5 1.65 0.33

t4:6 3 694 675 -0.11 1.03 2 0.25 0.27 684 672 2 0.25 0.27

t4:7 4 680 661 0.55 0.94 2 0.13 0.27 681 669 2 0.38 0.07

t4:8 5 885 866 0.95 0.80 5 0.51 0.67 911 899 5 1.52 0.27

t4:9 6 716 696 1.13 0.79 6 1.27 0.00 775 763 5 1.27 0.13

t4:10 7 874 855 0.94 0.83 2 0.38 0.07 868 857 2 0.13 0.00

t4:11 8 753 733 1.34 0.69 6 1.27 0.20 862 851 11 1.01 0.67

t4:12 9 1,018 998 1.03 0.82 2 0.63 0.27 1,031 1019 2 0.25 0.53

t4:13 10 581 562 0.31 0.95 3 0.13 0.07 572 560 3 0.00 0.00

t4:14 11 1,076 1,056 0.54 0.99 2 0.25 0.67 1,112 1100 1 0.00 0.07

t4:15 12 917 897 0.60 0.89 3 0.76 0.40 917 905 3 0.89 0.33

t4:16 13 907 888 1.02 0.84 2 0.38 0.13 921 909 2 0.00 0.27

t4:17 14 640 621 1.08 0.83 3 0.38 0.13 713 701 3 0.00 0.33

t4:18 15 641 622 1.06 0.85 5 0.89 0.20 751 740 3 0.25 0.33

t4:19 16 827 808 0.88 0.78 5 0.51 0.60 872 861 3 0.38 0.53

t4:20 17 1,153 1,134 1.62 0.65 2 0.76 0.60 1,192 1180 2 1.27 0.13

t4:21 18 981 961 1.72 0.63 7 1.14 0.73 1,053 1042 5 0.51 0.93

The other columns show the parameters’ value in each fit

t3:1 Table 3 Comparison between the AIC and BIC parameters for the sampling model with the mapping parameters compared to without the mapping
parameters in the orientation task. The other columns show the parameters’ value in each fit

t3:2 Subject Model with mapping parameters Model without mapping parameters

t3:3 BIC AIC a b M Ɛe Ɛm BIC AIC M Ɛe Ɛm

t3:4 1 875 856 1.19 0.84 12 2.2 0.80 902 890 12 2.6 0.80

t3:5 2 557 538 2.24 0.62 10 1.6 0.13 735 724 7 1.4 0.67

t3:6 3 915 895 1.28 0.75 6 2.6 0.40 919 907 2 1.2 0.53

t3:7 4 779 760 1.71 0.71 7 1.6 0.67 820 809 6 1 0.93

t3:8 5 730 711 1.2 0.78 6 1.2 0.27 784 773 5 1.2 0.27

t3:9 6 752 732 -0.03 0.98 6 1.4 0.00 750 739 6 1.4 0.00

t3:10 7 1,105 1,086 -0.02 1.1 5 2.2 0.00 1166 1155 2 1 0.53

t3:11 8 605 586 2.22 0.55 6 1 0.13 851 839 6 1.6 0.13

t3:12 9 572 553 2.74 0.46 12 0 0.53 926 914 6 0 0.80

t3:13 10 922 903 -0.3 1.07 3 1 0.13 920 908 3 0.8 0.40

t3:14 11 1,107 1,087 2.32 0.56 3 1.6 0.00 1175 1163 3 1.6 0.53

t3:15 12 1,156 1,137 -0.8 1.16 12 1.2 1.07 1,155 1,143 12 1.8 0.93

t3:16 13 906 887 1.82 0.62 12 1.2 0.67 1003 991 11 0.4 0.93

t3:17 14 549 530 2.03 0.62 12 0.8 0.40 796 784 6 1.2 0.40

t3:18 15 811 791 3.23 0.38 12 1.8 0.27 1,084 1,073 12 0 1.07

t3:19 16 897 878 2.28 0.57 3 1 0.00 1,028 1,017 2 0.4 0.53

t3:20 17 1,118 1,098 1.57 0.65 2 1 0.00 1,161 1,149 2 1 0.40

t3:21 18 1,013 994 1.09 0.77 3 1.2 0.27 1,038 1,026 3 1.2 0.40
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Fig. 7 Distribution of correlation coefficients across participants between root means square deviation (RMSD) and response time (RT)
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