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1. Introduction

The text below is taken from the entry “Mechanism Design” that I wrote for the Encyclopedia

for the Social Sciences.
M / Mechanism Design deals with the following types of problems: How to design a “mecha-
|” nism” or a game that has an equilibrium whose outcome maximizes some objective function,
W' guch as the maximization of social welfare, subject to certain constraints that depend on the

specific problem.
sl o past.

Mechanism design begins with the assumption that each one of the agents for whom the
mechanism is designed has access to a different piece of private information, and that elicita-
tion of this information is important for achieving the desired objective. Mechanism design
is thus all about incentives: about how to provide the agents with incentives to reveal their
private information, and to act in accordance with the designer’s objectives. Accordingly,
the most important constraint in mechanism design is called “incentive compatibility,” or
IC. The IC constraint obliges the designer to take into account the fact that the agents will
try to manipulate the mechanism to their advantage.

For example, in a famous mechanism design problem the challenge is how to design an
auction that maximizes the expected revenue to the seller under the assumption that the
willingness of the potential buyers’ to pay for the auctioned object is their private informa-
tion.

The roots of the question of how to collect decentralized information for the purpose of
allocating resources can be found in the early debates by economists regarding the feasibility
of a centralized socialist economy. These early discussions emphasized the complexity of the
systems involved, but it soon became evident that any system for making decisions over the
allocation of resources might be open to manipulation. One of the first to recognize the
importance of incentives in this context was Leo Hurwicz who coined the term “incentive
compatibility” in 1959.

Mechanism design has established itself as a field of study in the early 70s as a result of
Hurwicz’s work on the possibility of attaining efficient outcomes in dominant strategy equi-
libria in “economic environments,” of Mirrlees’s investigation into optimal income taxation
schemes, and of the studies of Clarke and Groves of efficient dominant strategy mechanisms
for the provision of public goods, which are known today as Vickrey-Clarke-Groves, or VCG,
mechanisms (Vickrey has studied such mechanisms in the 60s in the context of his work on
auctions). In the late 70s, Arrow and d’Aspremont and Gerard-Varet showed that it was
possible to obtain incentive compatible, efficient, and budget-balanced mechanisms. How-
ever, in 1983, in their research into optimal mechanisms for bilateral trade, Myerson and
Satterthwaite showed that these earlier possibility results might break down if the agents
were permitted to refrain from participation in the mechanism if it does not give them an
expected utility that is larger than their reservation utility. In 1982, Myerson published a
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paper on optimal auctions, which to this day acts as the model for implementing mechanism
design.

The literature on mechanism design subsequently continued to expand and presently
encompasses price discrimination, regulation, public good provision, taxation, auction design,
procurement, the organization of markets and trade, and more.

Mechanism Design has not had the effect on policy anticipated by its early practitioners.
This is probably because many of its main results are not robust against changes in the
details of the underlying environment (as argued by Robert Wilson in the so called “Wilson
Critique”). It still remains to be seen whether the current work on “robust mechanism
design” would make the theory more practicable.
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k2. Social Choice

TUtilitarianism judges collective action on the basis of the utility levels enjoyed by the
individual agents and those levels only. :I‘his' is literally justice by the ends rather than by
the means.” (Moulin, 1988) Sen calls the theoretical formulation of utilitarianism as defined
above, welfarism. Notice that in such a framework, basic ideals such as freedom, rights,
dignity, justice, etc. have no value in and of themselves, but only to the extent that they
enhance and are reflected in individuals’ utilities. Thrs is a serious shortcormng of the theory
(and economics more generally?), and I believe the maiy reason that social choice theory is
so difficult to apply in “real world” situations.! :

(;;‘egation of Preferences and Arrow’s Impossibility Theorem

1T

e A — a finite set of alternatives, #A > 3.

o L - set of linear orderings over A. A linear ordering is an ordering of the alternatives
by an order of preference, from the most to the least preferred alternative, with no ties.
A linear order is a binary relation (a set of ordered pairs of elements from a given set)
that is characterized by the following properties: -

- Completeness: Vz,y € A, either x = yory = 2.
Transrtlwty Vz,y,z€ A, x =y and y >z =Tz
Asymmetry Ve,yc A,z =yandy = ==z =y. (No mdlfferencee are allowed)

e N — a finite set of agents (that includes agents). : -

e For every i € N, preferences are-described by u; € L. For convemence we sometrmes
write u; (x) > u,; (y) instead of =, ¥. ¢

e A social welfare function (SWF) (“social aggregator of preferences”) is a m&ibping
R: LN — [ where L is the set of complete and transitive orderings. Indifferences are
allowed. '

We are interested in SWF that satisfy “nice” or “attractive” properties (sometimes, the
notion of “nice” is a little ad-hoc — for example, a property that helps prove a nice theorem
is considered nice).

Definition. A SWF is said to satisfy unanimity if it ranks alternative a strlctly above b
whenever every agent ranks a strictly above b.

IFor a defense of welfarism, and an argument that shows that any non welfarist rule necessarily gives
rise to Paréto inefficient outcomes, see Kaplow and Shavel’s recent book, Fairness vs. Welfare, Harvard
University Press (2002).
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Observe that Unanimity captures the idea behind Pareto efficiency in this context.
Another property that is considered by many to be a nice property is 1ndependence of
irrelevant alternatives (IIA).

Definition. A social welfare function is said to satisfy independence of irrelevant alternatives
(ITA) if the relative social ranking of any two alternatives depends only on their relative
ranking by every individual. Formally, a SWF 77 is said to satlsfy IIA if for all a,b € A, and
profiles u,v € LV :

¥

{ieN:u,;(a)>ui(b)}={z’€N:vi(a)>v¢(b)}¥:>{a,>;@b<:n>a,>;vb}.

Is IIA attractive? If ITA is violated, then the “decision making body” may have an
incentive to manipulate by restricting the set of alternatives to some B C A and individuals
may have an incentive to misrepresent their preferences over irrelevant alternatives.

Example. Borda Rule? -
Borda rule is an example of a scoring rule. The family of scoring rules is a family of Pareto
efficient rules that violate ITA. Consider the following preference profile:

points agent 1 agent 2 agent 3 Borda Score

3 a d b b:6
2 . b o c a:d
1 ¢ b d d:4
0 d c a c:3

Alternative b is the winner among {a,b, ¢ d} If the set shrinks to {a, b, d} (or if alternative
¢ is pushed to the bottom of individuals’ preferences) then any ANONYIOUS (symmetrlc w.r.t.
to agents) and neutral (symmetric w.r.t. to alternatives) rule makes {a,b;d} tie, and if the
set-shrinks further to {a, b} (or if alternatives c and d are pushed to the bottom of mdlv1duals
« preferences), then a is favored by majority rule. - ‘

The next property is definitely very “Unattractive.”

Definition. A SWF is dictatorial if there exists an agént (the dictator) such that the SWF
coincides with the preferences of this agent (for any profile of preferences!).

Theorem (Arrow’s impossibility, 1951). Suppose that #A > 3. Any SWF that satisfies
IIA and unanimity is dictatorial. (And conversely; a dictatorial SWF' satisfies 1IA, and
unanimity) '

2This rule was devised by the French Academician the Chevalier de Borda for the purpose of the election
of members for the French Academy of Sciences. Borda’s rule avoids the Condorcet Paradox (presnted in
the main text below), but was recognized to be open to manipulation by unscrupulous politicians. For
additional historical backgroud, see The Best of All Possible Worlds: Mathematics and Destiny by Ivar
Ekeland (Chicago University Press).




Example. The Condorcet Paradox®
Majority rule, which satisfies ITA and unanimity, may fail to be transitive. This is shown
for the following profile of preferences:

agent 1 agent 2 agent 3

a b c
b ¢ a .
c a b

By majority rule a = b > c>a. A contradiction to transitivity.
Proof. Proof 3 from Geanakoplos (2005).('(1 _ j7 A

Strict Neutrality Lemma. If IIAjis satisfied, then/{ﬂl binary social rankings are made
the same way. Consider two profiles of preferences u and v and two pairs of alternatives a, b
and «, 8. Suppose each individual has the same relative ranking of o, 8 in-v as he does of
a,b in u. Then the social preference between a, b under v 1s identical to the social preference
between «, 8 under v and both social preferences are tr'icﬁ. / .
. ’ , l// t 31/ /7 Ar

Proof. Assume the pair «, (3 is n%&éntical to the pair a,b (if they are equal, then the
proof follows immediately from TIAY. Fix a profile v in which, WLOG, a = b socially. Create
a new-profile w which is the same as u except that o is just above a (if a # a) and f is just
below b (if 8 # b).* By unanimity, in w a > a socially and b > # socially. By IIA, a = b
socially in w. By transitivity a = § socially in w, 5 and by IIA also « > (3 socially in any
profile v where individuals hold the same preferences over «, § as over a and b. By reversing
the roles of a,b and «, B, we conclude that a = b socially also in u.

Next, take two distinct alternatives a and b and start with a profile in which every
individual strictly prefers b to a. Beginning with individual 1, let each individual successively

3The French philosopher Jean-Jacques Rousseau helped pave the way for the French revolution of 1789 by
arguing that human beings were naturally virtuous and wise and needed only to be set free from tyrannical
governments- to order their affairs harmoniously. However, before the French revolution could put these
ideas to a practical test, the Marquis de Condorcet, who for the first time (1) used mathematics to model
human behavior, showed that majority rule (supposedly representing what a democratic government that is

responsive to the will of a free people would do) is logically inconsistent. For additional historical backgroud,.

see The Best of All Possible Worlds: Mathematics and Destiny by Ivar Ekeland (Chicago University Press)
and the review article by Freeman Dyson “Writing Nature’s Greatest Book” that was published in the New
York Review of Books in October 19, 2006.

4(Observe that this can be arranged such that individuals have the same relative preferences over o, 8 as
over a,b. If a = B or b = « then for the argument to work it is necessary to repeat it several times for
different pairs. For example, if there are three alternatives {a,b,c} and the two pairs are (a,b) and (b, a)
then the result can be first established for the pairs (a,b) and (c,b), then for (c,b) and (¢,a), and finally for
(c,a) and (b,a).

5See Exercise 7.

~
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move o above b. By unanimity and the Strict Neutrality Lemma there Will be an individual
i* that moves the social preference from b > a to a > b when a moves up.’

We show that i* is a dictator. Take an arbitrary pair of alternatives a and 8 and suppose
that @ > B. Consider a profile u where the «, 3 ranking for 4 #* ™18 arbitrary. Take
an alternative ¢ ¢ {o, 8} and consider a new profile v in which ¢ is above everything for
individuals 1 < i < 4%, ¢ is below everything for i* <1 < n, and a =4 ¢ = (. By IIA, the
Neutrality Lemma, and by comparison with the profile introduced in the previous paragraph,
socially o > ¢ and ¢ = 8 in profile v. It follows that by tran81tlv1ty, a > (B in v. Finally, by
ITA, o = B8 also in the original profile . ) |

Remark 1. Does_Arrow’s impossibility theorem imply “the impossibility of democracy”
as sometimes claimed? I don’t think so. For many preference profiles there is no problem
toaggregate e ndividuals’ preferences. Rather, the Theorem shows that 1t is impossible to
aggregate preferences in a certain consistent way (ITA imposes certain consistency require-

ments among social rankings of alternatives on different preference pr ofiles), and that ITA is .

“t00 strong” a consistency requirement in the presence of unanimity.” The Theorem tells us
that we cannot ignore information about “strength” of preferences (as implied by IIA) if we

e

Ll

want non—dictétorial SWF;Q)’ { /é oy L 5/ U o A\ / /7/ ’ /-d( qu,,f_,?;‘. ~

<
Remark 2. Arrow’s impossibility result generated a large literature that tried to figure out

how possibility can be re-established. We mention two such attempts.

— if instead of tl&nblthlty (ie., a = b, b = ¢ => a = ¢ which mehes a b, b>c=>
a>cand an~b b~ c=>an~ c), weonly required that the strict part of the SWF
be transitive (i.e., only that a > b, b = ¢ = a » ¢, indifference need not be transitive
as in example of amount of sugar in coffee) then it can be shown that instead of a
dictator, there would be an oligarchy — a set of agents each of which can at least force
a tie. An oligarchy is not a big improvement over a dictatorship. If it is small,-then it
is very similar to a dictatorship, and if it is large, then it means that society is seldom
capable of breaking indifference among different alternatives.

— Arrow’s impossibility Theorem demonstrates that it is impossible to establish consis-
tent social preferences over the entire domain of individuals’ preferences. The power
of consistency to rule out social preferences is weakened if the domain of individuals’
preferences becomes smaller. This suggests that it may be possible to re-establish pos-
sibility by restricting attention to an “mterestmg” subset of individuals’ preferences.

Indeed, if the domain of preferences is restricted to single peaked preferences (stch

preferences arise naturally in a political context), then majority rule (which satisfies

[TA and unanimity) can be shown to satisfy transitivit 0“/ °/ e
Y) fy v s (V\Q/ </ , o

6The strict neutrality lemma implies that (1) social preferences are always strict; and (2) 1t's the same
individual $* who “moves” preferences for, each pair of alternatives.

"Besides, democracy is more complicated than mere “majority rule,” even broadly definted. It also
requires protection of the rights of the minority, due process, equality before the law, etc.

8
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" Remark 3. It seems natural to aggregate prefererices by “proximity.” Define a metric
over linear orders (for example the minimal number of “fips” of pairs of alternatives that
is required to change one linear order to the other). Let social preferences be given by
whatever linear order that minimizes the sum of distances from individuals’ preferences. It
is not clear to me why the literature has not investigated this approach. Indeed, there is no

characterization of the social choice rule that corresponds to the metric proposed above (but
see Nitzan and Lehrer, JET, 1985).

2.2, Strategy-proof Implementation & Gibbard-Satterthwaite’s Impossibility y
\ orem I

51>Fe5°2~7L e | Lo— P ,( 3)

Arrow’s theorem shows that assuming we know agents’ preferences, it is impossible to ag-

&

gregate them in a “satisfactory way.” But in practice we cannot observe agents’ preferences.
Rather, we must rely on the agents to truthfully reveal them. The Gibbard-Satterthwaite
Theorem shows this is impossible to do in a way that is “strategy-proof.”

A decision function (voting rule) is a function f : LN — A. We focus on voting rules
that are single valued (vs. correspondences f : LY — 24) deterministic (vs, stochastjc
1 LY — A(A)) and that are onto: Va € A, Fu € L such that f(u) = a. l‘ T .2‘,:‘_:‘3/.7
. LZ/ 3 Sana L4 ' '—cé.
Definition. A SCF fis Pareto efficient, if whenever some alternative a is at tho top of every .
individual ’s rankmg L;, then f (Ly,...,Ly) = a. “\@\ /.,L L ,a,k.f

JGM',' ﬁ” ‘\44%
Remark. Observe that this is a weak definition of Pareto efficiency. A stronger definition C“ ' e

, would require that if all the individuals rank the alternatives in a set F above all the other & 44 z“
> alternatives, then the decision function does not select an alternative-thet-is~astin I

ouly,

we

~
\

-

Definition. A SCF f is monotonic if Whenever f(L1,...,Ly) = a and for every individual ¢

and every alternative b the ranking Lj ranks a above b 1f L; does (i.e., a “moves up” weakly
ki L, 1t to L;), th L’,. Ly) =

in ¢’s ranking in Iealveo 3' enf 1 V) = ée/au//

> Ey\ 1;:1_:3 Pre‘(— (7 }QL Coww l/;aﬂ:L'M?')[(
g Remark. Notice that because it allows the relatlve ranking of other alternatives to also

change, monotonicity implies a type of independence of irrelevant alternative.

Definition. A SCF f is dictatorial if there is an individual ¢ such that f (L, o Ly) =aif
and only if a is at the top of i’s ranking Lj.

!
QU We first gpﬁgv% a theorem which is a version of a theorem of Muller and Satterthwaite
(JET, 1977).

Theorem. If #A > 3 and [ : LN - A is Parcto efficient and monotonic, then f is a
dictatorial social choice function.

Proof. Proof of Theorem A in Reny (2001).
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Definition. A SCF f is strategy-proof if for every individual 4, every L € LY, and every
Li e L, f (L, L_;) is ranked weakly above f (L;, L—;) according to L; (i.e., it is a dominant
strategy for individual ¢ to reveal 1ts preferences truth?:lly) - VM’ - //6/

S d%g g,/o.{ vs. do~luad st 3pudin A3, ‘)ew/\{)
Theorem (Gib Satterthwaite’s Impossibility, 1973, 1975) If #A > 3 and

f: LV — A is strategy-proof and onto, then f is dictatorial. (In plam words, any rule thas
is not dictatorial is sometimes subject to manipulation.) ¢ -+ '

Proof. We show that a strategy-proof and onto social choice function is Pareto efficient
and monotonic. The proof is taken from Reny)é 2001). First, we establish monotonicity.
Suppose that f-(L) = « and that for every alternatlve b, the ordering L; ranks a above
b wheénever L; does. We want to show that f (L, L_;) = q.ASuppose to the contrary that
f (L%, L) =.b # a. Strategy-proofness implies that a = f (L) is ranked above f (Lj, L;) = b
according to L; (if not, then L; can manipulate). The fact that the ranking of a does not fall
in the ALove to L implies that a = f (L) must also be ranked above b = f (L;, L) according
to L] /T‘h/ s is a contradiction to strategy-proofness because in this case Lj can manipulate
by reporting L;. Hence, f (L}, L;) = f (L) = a.

Suppose that f (L) = a and that for every individual i and every alternative b, the
ordering L/ ranks a above b whenever L; does. Because we can move from L = (Ly, ..., L)
to L' = (L’l, ..., L) by changing the ranking of each individual ¢ from L; to L% one at a time,
and because we have shown that the social choice must remain unchanged for every such
change, we must have f (L') = f (L) . Hence, f is monotonic.

Next, we establish Pareto efficiency. Choose a € A. Because f is onto, f (L) = a for
some L € £V, By monotonicity the social choice remains equal to @ when a is raised to
the top of every individual’s ranking. Again by monotonicity, the social choice must remain
o regardless of how the alternatives below a aresranked by each individual. Consequently,
whenever a is at the top of every individual’s ranking the social choice is a. Because a was
arbitrary f is Pareto efficient. |

Remark 1. It is possible to generalize the Gibbard-Satterthwaite Theorem to permit an

~ arbitrary game form where agents are endowed with general message spaces. The Revelation

Principle (to be defined and discussed later in the course) implies that strategy-proofness
can be replaced by the requirement that equilibria be in dominant strategies.

Remark 2. A random dictator rule is strategy-proof (also anonymous and neutral), but is
likely to be inefficient in a quasi-linear world (where individuals’ utilities are all measured
on the same scale). Suppose for example that preferences are quasi-linear and are given by

Utility 1 2
10 a c
8 b b
0 c a

10
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Random dictator rule: Ex-ante welfare of 3 (10 + 0) + 3 (10 +0) = 10
Choosing b : Ex-ante welfare of 16.

This shows that a random dictator rule can be very inefficient (although still, of course,
Pareto efficient).
Random dictator rules are the only rules that are strategy-proof with probabilistic decision
functions, but, some additional mild “attainability” conditions have to be satisfied for that.
Without attainability conditions, probabilistic versions of scoring rules, Copeland’s and
Simpson’s rules are also strategy-proof.

Remark 3. The Gibbard-Satterthwaite Theorem also fails to hold when some reasonable
restrictions are imposed on the domain of individuals’ preferences. *

1. Condorcet Winner, An alternatlve is called a “Condorcet winner” if it beats any

other alternative in majority comparison. Nefe : » <l -1 weD"
R‘-u/g wte loui' ""“"71

Lemma. Fix an odd N and a restricted domain D C L such that for alluw € DY = ;”'1;'“ ”ji" s L 2’:::
a Condorcet winner exists. [i.e., restrict attention to the set of environments where T2 coull ,"”i /f
majority rule produces a Well defined winning set]. Then, the decision function p ¢ L’J J weD

that associates with every profile in DV its Condorcet winner is coalitionally

strategy-proof.

Proof. Let CW (u) denote the Condorcet winner at u € D. Suppose there exists
a profile u € DV, a coalition T and a joint lie vy € D#*T such that CW(u) =a
~ but CW (vp, un\r) = b and ui(a) < ui(b) for all i € T (). By definition of CW,
_b the set of individuals who prefer a to b under u, denoted N(u,a,b), is a-strict
majority and by (¥) N((vr,unr),a,b) contains N(u,a,b). Hence b cannot be a
Condorcet winner at (vr, un\r)-

/"> 4ect\y -v; 74./4 wAds /;L/Q/h / 7‘ (4

- bebow. - .
@'jﬂﬂ/«“, Example. Single peaked preferences Seq below. " ang /“,/.,Q ) Jonn o /jl“'“’ ) s, u/f

c.;.f, ’(\Ju
’EDJ«{J .

7o LCJ

C ondorie!l G gijat
w Jt.ol“:u

Sex C

?Lé MZ‘, a higher p to a lower one.

Hore ¢/e ' : N4 L why. f o S [
2. “Economic Environments.” As we will show later in the course, W—_

anisms permit dominant s _t/ra’tengplemenfatlon in environments with quasi-linear
preferences That is, the space of alternatives is given by D x R™ where D is"dn- arbi-
frary set with no particular structure and w; (d,p) = v; (d) + pi. A choice of d € D is

interpreted as the selection of a social alternative, and a choice of p € R™ is interpreted
as a vector of payments made to the Ia ts. Notice that an 1nd1v1dual always prefers

see
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1. (Mas-Colell, Whinston, and Green 21.D.1) Suppose that X is a ﬁnlte set of alterna- -
tives. Construct a reflexive and complete preference relation ~on X with the property
that >~ has a maximal element on every strict subset X 'C X, and yet 7~ is not acyclic.
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9. Define Pareto efficiency of a social welfare function. Does your notion of Pareto effi-
ciency imply or is implied by unanimity?

3. In Step 2 of the proof of Arrow’s impossibility Theorem, we argued that there is an
individual who “moves the social preference from b = a to a > b.” How do we know
that the individual does not move the social preference from b > a to b ~ a?

'lj's b 5\'('.)"‘:'-) ‘v))ﬂ 'hw\) s‘ we

4. Show that a social welfare functionyannot be indifferent between any two alternatives

® (Hint: use the Strict Neutrality Lemma).
L 1
5. Define single-peaked preferences.tg}gw “ﬁl‘&}t‘ El&y}ority rule satisfies unanimity and IIA ,
@ Stow if jndividuals] preferences are aﬁ\e’fngle—peaked. oy ./

L Majpeily FOR 5 Taasifive
6. (Mas-Colell, Whinston, and Green, 21.D.7) Construct an example with three alterna-
tives in R? and three agents. Each agent should have single peaked preferences on R?,
and yet majority rule should cycle on the three alternatives.

7. Show that transitivity (a = b, b = c==a = c) implies that a > b, b= c = a > ¢
anda~b b~c=a~c

8. Suppose that there are only two alternatives. Give three different examples of a social
welfare function that satisfies unanimity and ITA. Give three different examples of a
social choice function that is strategyproof.

9. Define a notion of “distance” between two linear orders as the minimal number of
“Qips of two alternatives” that is needed in order to transform one linear order to
another (e.g., the distance between the order abc and bea is 2). Consider a method
for the aggregation of preferences that maps every profile of individuals’ preferences
into the preference ordering that is closest to this profile (i.e., minimizes the sum of
distances from the linear orderings in the profile). What does this method of aggre-
gating preferences produces for an environment with 3 individuals and 3 alternatives?
Does your answer generalize to more individuals and alternatives? (Hint: the answer
is the Borda rule, and, yes, it generalizes; this method of aggregation seems as good
to me as Arrow’s, and I don’t understand why it didn’t receive much attention in the
literature). -

10. (Osborne and Rubinstein, exercise 183.1) Explain, without making reference to the
Gibbard-Satterthwaite Theorem, why the following social choice function is not strategy-
proof: ’

*

a ifforalli€ N, a=;bforevery b# a
a* otherwise

@ 1. Given a social welfare function, can you give a social choice function that would
be consistent with it? '

12




9. Civen a social choice function, can you give a social welfare function that would
be consistent with it?

3.* Show that a social welfare function that is consistent with a strategyproof social
choice rule is monotonic and satisfies ITA (Hint: see Moulin, p. 299-300). Ar-
row’s impossibility Theorem then implies that the social welfare function must
be dictatorial, which implies that the social choice rule must be dictatorial. This
allows us to use Arrow’s Impossibility Theorem to provide a short proof for the
Gibbard-Satterthwaite Impossibility Theorem.

12.* Can a strategic manipulation of Borda rule ever result in the choice of a Pareto ineffi-
cient alternative? Prove or find a counter-example.® :

13 1. Show that Borda rule is “asymptotically strategyproof.” That is, show that the
) proportion of profiles on which an individual can successfully manipulate the social
decision in its favor decreases to zero with the number of individuals.”

2. Can you find an example of a “Condorcet consistent” rule (a rule that always
selects the Condorcet winner when it exists) that is not asymptotically strate-

gyproof?
.7 '/’(7/,\/ RSP Z » 1/5\
A //J
LL 4 ‘

'(/Q/ Gt ,)/ ,JQ/
W W< qmE / /m s Aenl 4

LN )
ez . S
_b/ o . . L 1. rO pd s /O)

@ bbb a.x
b Lacc ( 6
o ¢ ba 2
8Hint: see the paper by Baharad and Neeman that is forthcoming in Social Choice & Welfare; the paper

can be downloaded from my homepage at http://www.tau.ac.il/ “zvika/.
9This question is based on the paper by Baharad and Neeman that was published in the Review of

Economic Design in 2002 and that can be downloaded from my homepage at http:/ /www.taw.ac.il/ “zvika/.
For (1), see the numerical example in p. 337, and for (2) see the example in p. 339.
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3. Implefnentation

This lecture is based on Chapter 10 of Osborne and Rubinstein’s text “A Course in Game
Theory.” '

LS.l. Introduction

Consider the following set-up.

N ={1,...,n} is a set of individuals.

C' is a set of outcomes.

P is a set of preference profiles over C, == (2),cy € P.
A social choice rule is a mapping f : P — 2.

A social choice function is a mapping f: P — C.
The objective is to design a game that would implement the social choice function f in the
following way:
P 4, C
N /!
5 G ¢

game form

The idea is of “design behind a veil of ignorance.” Before players know what their prefer-
. ences would be, they design a “constitution” that would determine how they would decide
what to do later;, after they would obtain their preferences. One of the differences between
implementation and mechanism design literatures, which we’ll study later, is that in imple-
mentation literature it is usually assumed that the players’ preferences become commonly
known among them after the players obtain them. ' '

Example. A “market” implements a Pareto efficient allocation through a “competitive
equilibrium” (Hurwicz, 1970s). This result illustrates the triangle above although it is not
strictly speaking an example of it because consumers in a “market” are not strategic and so
a market is not a game form. '

Definition. A strategic game form with consequences in C is a triplet <N AADien g> where
A; is a set of actions for player 4, and g : A — C' is an outcome function.

A strategic game form and a preference profile (27),  induces a strategic game (N, (Ai)iew » (e N)
where each - is defined by a = b if and only if g (a) Z; g (b) . (Observe that ' is defined
over actions while - is defined over outcomes.)

Definition. An extensive game form with perfect information with consequences in C is a
four-tuple (N, H, P, g) where ‘

H is a set of histories;

P: H\Z — N is a player function ( Z C H is the set of terminal nodes)

g: Z — C is an outcome function.

ﬂi; fefin:tiom "“rl"'-’lé Gaslu~es | 14
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An extensive game form and a preference profile (77),cy induces an extensive form game.

An environment for the planner consists of:
N — a set of players.

C' - a set of outcomes.

P — a set of preference profiles over C'

G — a set of game forms with consequences in C.
form
The planner must have some idea about how the ganfM designs will be played. The

planner’s idea is captured by the solution concept that is used for the game. .

Definition. A solution concept for an environment (N, C,P,G) is a set valued function

A (2‘4) (for strategic form games, a lottery over a set of action profiles)
A (27) (for extensive form games, a lottery over a set of terminal nodes)

S:GxP—

Definition. Let (N,C,P,G) be an environment and let S be a solution concept. The game

form G € G with outcome function g is said to S-implement the social choice rule f if for

every profile =€ P, g (S (G, %)) = f (). In this case, we say that f is S-implementable in
(N,C,P,G).

Remark. Often, g (S (G, 7)) = f () denotes equality between two sets rather than single
outcomes.

Tt is often the case that the set of actions is equal-to the set of preference profiles, and
where each player is required to report the entire profile of players’ preferences, including
the preferences of other players.

Definition. Let (N, C,P,G) be an environment in which G is a set of game forms in which
the set of actions for each player is the set P of preferences profiles. Let S be a solution
concept. The strategic game form G € G with outcome function g is said to truthfully
S-implement f : P — C' if for every profile € P,

~a* € S(G, ) where af =/ for every i € N (truth-telling is a solution), and

~g(a) € f(Z)-

Tn this case, we say that f is truthfully S-implementable in (N,C,P,G) .

Remark. There are three important differences between truthful implementation and im-
plementation:

1. in truthful implementation, A; = P and truth-telling is a solution;
2. a non truthful solution may lie outside f (7)) ; and

3. in the case of truthful implementation, not every outcome in f () necessarily corre-
sponds to a solution of the induced game.

15
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z 3.2. Implementation in Dominant Str@ejﬂ

Suppose that G is the set of strategic game forms, and S is dominant strategy equilibrium.

Definition. A dominant strategy equilibriumwof a strategic game (N, (Ai);icn » (Z)ic y) 1S a
profile of actions a* € A such that for every player i € N,

(a;, d—i) i (Cbi,-a—i)
for every a € A.

Theorem (Gibbard & Satterthwaite). Let (V,C,P,G) be an environment in which ¢
contain at least three members each, P is the set of all possible preferences profiles, and G
the set of strategic game forms. Let f : P -» C be a choice rule that is dominant strategy
implementable and that satisfies the following condition: for every ¢ € C, there exists a
profile =€ P such that f (35) = {c} . Then f is dictatorial (there exists a player j € IV such
that for every preference profile =€ P and ¢ € f (), ¢ Z; b for every b € C).

This theorem is more general than the one we proved in the previous lecture because
J " ¢ 1- C
it is formulated for a g A&pr\zl mesbia e sC aceja@%fox ?n}max}t sii'fm}egy cg}s‘(ead of T%mtog
proof implementatior. However, by using the Revdomon leuple Pxplamed elow) it is
straightforward to generalize the previous argument to this more gener al case.

Remark. It is possible to implement efficient decision rules in dominant strategies in quasi-
linear environments using ‘Groves mechanisms.” We will discuss this result in detail in the
next chapter of the course, when we talk about mechanism design.

3.3. Nash ImplementationJ

Example (Solomon’s trial as a problem of truthful implementation). The example
is based on the biblical story in which two women came to King Solomon, each arguing
that a certain baby is hers. Solomon, who is considered in Jewish tradition to have been
“the wisest of all men” ordered that the baby be cut in half, and each half be given to one
woman. One of the women said, fine, neither I nor the other woman will have the baby. The
other woman said, no, let her have the baby but just don’t cut the baby in two, upon which
Solomon declared her the true mother (for showing true motherly love towards the child).
Let’s consider this as an implementation problem. The set of consequences is given by:

a give baby to 1
C=< b givebaby to 2
d cut baby in two

Preferences are given by
6 (1 is real mother) a = b= d bodoa

¢' (2 is real mother) @ = fd > bha-yd
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According to the story, the difference between the real and pretend mother is that the real
mother cares about the baby itself, not just about herself and about her fight with the baby’s
real mother. ‘ ‘

We want to implement the following social choice function

' o J@ =Aa}, f(0) =A{b}.
‘[»_fUH ul ;k'/,/:,\,,,jcl..g e
He a%"‘}"“ j e {;ﬂ——- :

Shsw .‘A«.‘{ (-s\.mf' heve 9_/ 6
a 6/ ot o4 tLJ?ImJ @mine Im?ne hers

\ | -
€ ! ' @/hers b |4
= WKL gttt Tl

. ) - - )
@ laf a bl iM//e_WM tad o of /1, soc <l clejee Euet o ? MO‘\', re ”"'// /j‘TVJ{,;
° . . ‘. . . . ’ & e
The next observation about the “revelation principle” is stmlghtforward and yet, powerful. Z
It appliés in many different contexts. .

m (The Revelation Principle for Nash lmplementation)r Let (N,C,P,G) be
an environment in which G is the set of strategic game forms. If a choice rule is Nash-

implementable then it is truthfully Nash-implementable.

Proof. Osborne and Rubinstein, p. 185-6. Suppose that players’ preferences are given by ~
and that all players except for i report their preferences gruthfully in the truthful mechanism. & .
A report of 7=/ by player 4 in the truthful mechani;g/p{oduces the same outcome that would
be obtained by the original mechanism when all other players play their equilibrium strategies s .
- and player ¢ plays the equilibrium strategy it plays when players’ prf,f(;rences are give by ¥y . >;;) >,-_‘£)
Since we have a Nash equilibrium under the original mechanism%ollows that player ¢
cannot benefit from not reporting its preferences truthfully
Ll EE4S
oul” Bl S , - GO ket ®
f/gw- L . .N-(—@-/Z/. Yo L [OP fC o~ ;LZ.‘/@, (YO
Remark. The Revelation Principle does not imply that we may restj/lct attéption to games
in which each player announces a preference profile because the game that truthfully Nasgh-
implements a choice rule may have other non truthful Nash equilibria that generate outcomes
outside f (). However, it does imply that we may restrict attention to such games if we
want to prove that a certain choice rule is not Nash-implementable.

Definition. A choice rule f : P — 2€ is monotonic if whenever ¢ € f (%) and ¢ ¢ f ('),
then there exists some player ¢ € N and some consequence b € C' such that ¢ Z; b and b i C.

U
<~y ety gy T
repo A s //u[ e eend,
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each player j announces a number a;,

':is valfu:hof tl;e project, and the project is executed if and ouly if the
um ot these declarations is at least ~:
: ?Y; the payment made by plas
?; 1;eligua.l tf) hj.(a-j) .(Whi(!h is independent of his a.nnouncemzmrz,) )S;,
:;h e project is cax.'ned out, an amount equal to the difference be’tweea

e cost of the project and the sum of the anunouncements made by the !
other players. Formally, in this strategic game form (N, (4;), g) we have :
A; =R and g(a) = (z(a), m(a)) for each a € A where ’

{m(a)=lifandon1yif2ieNa52'y ’
m;(a) = 2(a)(y — Liemgsy @) + hilay) for each j ¢ N, (1841

Such a game form is called a Groves mechanism.

= {PROPO.SITION 184.2 Let (N,C,P,G) be an environtent in which C =
ei:z;z HQ z € {0,1} and m € R¥}, P is the set of profiles (=) in which :
/i @8 represented by a utility function of the form é::c —m; for ]
;;;;ze 8; € ]I.(, and G is the set of strategic game forms; identify ’Piwiﬂz’:
+ A choice function f:RN — C with f(6) = (2(6),m(8)) for which
* 2(0) =1 if and only if Pienbi >

-foreachjENthemisafunctionhj such that

2ierni5y 0:) + hs(6-5) for all 6 € RV
is truthfully DSE-
defined in (184.1).

Proof. Let j € N and let o
players other than Jj- We
choose a_j,

interpreted as a declaration o -
eclaration -Hence it is a dominant action for each player j to choose a; = 6;.

The outcome g(6) is equal to £(8), so that (N, (4;),g) truthfully DSE-
iplements f. 0

Note that the Groves mechanism (184.1) does not Nash-implement a
vice function f satisfying the conditions of the proposition: for exam-
de, if v = 2, [N| = 2 and 6; = 1 for both players then the associated
same has also, in addition to (1,1), an inefficient equilibrium (-2, —2}.

2B EXERCISE 185.1 In an environment like that in the previous propcsition,
b show that if a choice function f with f(8) = (2(6),m(6)) and z(f) = 1 if
and only if 3, 0: > 7 is truthfully DSE-implementable then for each
j € N there is a function h; such that m;{8) = z(0)(Y — Xiemgs; 02 —
R;(6_;) for all § € RV, [You need to show that whenever z(6_;,8;) =1
and :B(e._j, 9;) =0 then mj(ﬂ_,-, Gj) - mj(B_j, 9_'7) =q— EieN\{j} 8;.]

10.4 Nash Implementation

We now turn to the case in which the planner, as in the previous section,
woes strategic game forms, but assumes that for any game form she
designs and for any preference profile the outcome of the game may be
any of its Nash equilibria.

The first result is a version of the revelation principle (see alsc Lemma
181.4). It shows that any Nash-implementable choice rule is also truth-
fally Nash-implementable: there is a game form in which () each player
" has to announce a preference profile and (i) for any preference pro-
. fille truth-telling is a Nash equilibrium. This result serves two pur-
. poses. First, it helps to determine the boundaries of the set of Nash-
implementable choice rules. Second, it shows that a simple game can be
used to achieve the objective of a planner who considers truthful Nash
~ equilibrium to be natural and is not concerned about the outcome so
long as it is in the set given by the choice rule.

» LEMMA 185.2 (Revelation principle for Nash implementation) Let (N,
C,P,G) be an environment in which G is the set of strategic game
forms. If a choice rule is Nash-implementable then it is truthfully Nash-
implementable.

Proof. Let G = (N, (4:),g) be a game form that Nash-implements the
choice rule f:P — C and for each ¥ € P let (a;(X)) be a Nash equilib-
rium of the game (G, z). Define a new game form G* = (N, (4]),9%)
in which A} = P for each ¢ € N and g*(p) = g({a:(p:))) for each

m;(8) = z(8)(y -

implemented by the Groves mecham'sn{ (N, (A:),g)

—j be an arbitrary vector of actions of the
' argue that when the pla.yers other than j
J’s payoif when he chooses a; = 0; is at least as high as h;; i

payoff when he chooses any other action in A;. There are three cases

* Hz(a_;,6;) = z(ay, a}) then
9(a—j,a}) = g(a_;,8;).

. iI::z:—(a_-j,ﬂj) =0 and :z:(a_?—,a;-) = 1 then j’s payoff under (a_;,6;)
i 20126 = (), while bis payol under (0,5 I
siJn . ila—j,a5) = ‘?j - '(7 - Ei.eN\{j} ) — hjla_;) < —hj(a_;),

e x(a.j,aj) = 0 implies that Es‘EN\{j} a;+0; <«.

. :.:?(.a:j,ej) =1 and z(a_;,a) = 0 then j’s payoff under (a;j,ﬂj)
vl "'ga(a:ij,ej) = 0 = (v = Tiemygsy @) — hyla_y), while
o pgo under )(a—j,a,-) 8 —mj(a_j,a}) = —hj(a_;) < 6; -

~ 2uiem\(j} %) — hj(e—;), since z(a_;,6;) = 1 implies
ieN\{j} & + 85 = 7. »%) e et

mj{a-;,a;) = m;j(a_;,6;) and hence

Vv
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— Chapter 10. Implementation Theory 3

P € XienA}. (Note that each p; is a preference profile and p is a profile
of preference profiles.) Clearly the profile 5* in which P} = I for each
i € N is a Nash equilibrium of (G*, %) and g*(p*) ¢ bita ! o

ote that it does not follow from this result that in an analysis of
Nash implementation we can restrict attention to games in which each -
player announces a preference profile, since the game that truthfully -

Nash-implements the choice rule may have non-truthful Nash equilibria
that generate outcomes different from that dictated by the choice rule.
Note also that it is essential that the set of actions of each player be
the set of preference profiles, not the (smaller) set of preference rela
tions, as in part (b) of the revelation principle for DSE-implementation
(Lemma 181.4). " :

- We now define a key condition in the analysis of Nash impl‘émentai;ion.

> DEFINITION 186.1 A choice rule fFfP=Cis monétonic if whenever .

¢ € f(X) and ¢ ¢ f(>=') there is some player i € N and some outcome
beCsuchthatc?;,,-b'andb&c. :

That is, in order for an outcome ¢ to be selected by a monotonic choice
rule when the preference profile is Z but, not when it is %’ the ranking of

¢ relative to some other alternative must be worse under %/ than under -

Z for at least one individual.

An example of 2 monotonic choice rule f is that in which {f(?\;) isthe

set of weakly Pareto efficient outcomes: f(Z)={ceC: thereisnobe
Csuchthat b »; cforalli e N}. Another example is the rule f in
which f() consists ofevery ou%go;peﬁthat is a favorite of at least one
player: f(X) = {c € C: there exists i € N such that ¢ Z; b for all

beC}.
® PROPOSITION 186.2 Let (N,C,P,G) be an environment in which G is

the set of strategic game forms. If a choice rule is Nash-implementable
then it is monotonic.

Proof. Suppose that the chaice rule fiP—=Cis Nash-implemented by
a game form G = (N, (4;),g), c € f(Z), and ¢ ¢ f(>’). Then there is
an action profile a for which g(a) = ¢ that is a Nask equilibrium of the
game (G, %) but not of (G, >’). That is, there is a player j and action

a@; € Aj such that g(a_;, a3) =7 g(a) and g(a) =; g(a—j,a}). Hence f is
te- : |n]

< EXAMPLE 186.3 (Solomon’s predicament) The biblical story of the Jud,
ment of Solomon illustrates some of the main ideas of implementation
theory. Each of two women, 1 and 2, claims a baby; each of them knows

187
10.4 Nash Implementation

who is the true mother, but neither can prove her motherl?ood, Sololnfon
tries to educe the truth by threatening to (Eut the baby in }::o‘, 1€ )l;imci
on the fact that the false mother prefers this outcome to t ft mt: o
the true mother obtains the baby while the true mother- pre ;rsba.bglt0
the baby away than to see it cut in twot.' Solomon can give the y to
& thers or order its execution. '

“t;:';:;{:’e l:tloa be the outcome in which the baby is given .to ml:)jt;llzle;;;
b that in which the baby is given to mother 2, and d tl'lat in wl _
baby is cut in two. Two preference profiles are possible:

6 (1 is the real mother): ¢ =1 b>1d andb>2d 20
N ® ' .
6’ (2 is the real mother): ¢ >} d >§ band b >5 a >3 d.

Despite Solomon’s a.llegedeisdom, the choice rule _f deﬁned h}; f.(9)n:
{a} and (¢} = {b} is not Nash-implementable, since 1tdls 1:0 rx:x(; >
tonic:-a € f(8) and o ¢ f(8') but thereis no outcon:ge yandp yeoeeds y
such that a ; y and y > a. (In the biblical story Solomon suc o
assigning the baby to the true mother: he gives it to the only wor;a.nbe
announce that she prefers that it be given to the other wt,)ma.n t ;n
cut in two. Probably the‘women did not-perceive Solomon’s instructions ‘
as a strategic game form.) - '

The next result provides sufficient conditions for a choice rule to be
Nash-implementable. :

DEFINITION 187.1 A choice rule f: P - C has no vetc;- pov;er ailf
¢ € (=) whenever for at least [N] — 1 players we have ¢ ; y for

yeC.

ProposSITION 187.2 Let (N; C,P,G) be an envirc’mment. in :::m;g :
the set of strategic game forms. If |[N| 2> 3‘ then any choice rule tha
monotonic and has no veto power is Nash-implementable.

. Let f: P — C be a monotonic choice rule that ha‘s no veto power.
';Tzooc'instmit a game form G = (N, (4:),9) tha.t -Nash—1vmplez:tlae‘auxﬂ;tsri i 1::;
follows. The set of actions A; of each p]z?.yer i is the §et ?f ghe
(ps, i, m;), where p; € P, ¢; € C, and m; is a nonnegatfl;: e;nteggﬁm.
values g((pi, ¢i,m:)ien) of the outcome function are de as

o If for some § € N and some (,c,m) with ce f(z) we have
(93, i) = (7, ¢,m) for all i € N\ {j} then

' ¢ ifeZjc

9((ps, &5, m3)) = {c

fe=jc. X,
J

A
A
,

gt

J.
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Intuitively, this implies that it is impossible that ¢ has weakly improved its ranking from
> to =/ . Rather, ¢ must have gone down in at least one player’s ranking. This definition
of monotonicity generalizes the one given in the previous lecture to social choice rules. It
coincides with the definition given in the previous lecture for social choice functions (in
previous lecture, weak improvement == choice is preserved; here, choice is not preserved

— not a weak improvement). _
f‘lx'b*’D‘L) of Momtfour Secinl Cloree fuky .
Example 1. f () is the set of weakly Pareto efficient outcomes, [/ﬁ,__ L e
s ‘

Ao L.o 414.’(; \/

f(z)={ce C:3be C such that b >; ¢ for every i € N}

Example 2. f () consists of every outcome that is the favorite of at least one player,

F(=)={ce C: 3 e N such that c = b for every b€ C}.

(Observe that this may be a strictly smaller set than the set of weakly Pareto efficient
outcomes. ) '

Proposition (Maskin, 1985). Let (N,C,P,) be an environment in which G is the set

+ of strategic game forms. If a choice rule is Nash-implementable, then it is monotonic.
mastouidy Iy btcessary foq Ml ioppndt,

Proof. Osborne and Rubinstein, p. 186. /)\ L o«/t// :

Example (Solomon’s trial as an implementation problem). Recall ‘

e ch‘Lb// of
Sofot o 7]

a) a 'qu’lt(%o,

and preferenices are given by MT;/.,&(Q: .

a  give baby to 1
=< b give baby to 2
d cut baby1n two

0 (1 is real mother) a > tb=1d brodrea
9 (2is real mother) o > jd>i b bsjayd

The social choice function
f0) ={a}, f(0) = {b}

is not Nash-implementable because f is not monotonic. To see this, note thata € f(0), and
a ¢ f (), but there does not exist a y € C and a playeri € N such that a =; y and y > a.-

So, how come Solomon solved the problem successfully? Osborne and Rubinstein write
(tongue in cheek?) that the women prébably didn’t perceive the situation as a strategic form
game. In my opinion, Solomon was bluffing, but the women either believed him, or even
if not did not dare call his bluff. In any case, there is no reason that the pretend mother
couldn’t have also said “give the baby to the other women but don’t cut it.”

Cvt ’ﬁ"d‘“' F‘-" ,'—sﬂ\ll,w'bb)u‘v ‘:ﬂa,:() ;?yj;&\’rl‘/ 0"

'l-nlwﬁl,..’l'-w . 18 LIA W % . I(]Zc:zt[?* e~ f//:\;‘o&t
B ) Ve V el |/ il
TL\L/ri?UM’b v iy aydire | ~\l"&\"‘?°ﬂ ",

Sy
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Definition. A choice rule f : P — C has no veto power if ¢ € f () whenever for at least
|N| — 1 players ¢ 7; y for every y € C.

Proposition (Maskin, 1985). Let (N,C,P,§) be an environment in which G is the set \é@

of strategic. game forms. If [N| > 3, then any choice rule that is monotonic and has no veto o

e

power is Nash-implementable,

N Y i S T G A A /K [ jmtry o A
Proof. Osﬁome and Rbinstein, pp. 187-8. C—-—’> [’i e R Cent” "(()‘ )J [
AL/OU & Y (5 ——'6:3 iy NF/__..J \/QCP.J

Remark. The proof relies on a “natural” or “plausible” component. A complaint against
the consensus is accepted only if the suggested alternative is no better for the player who
complains under the preference profile that is reported by everyone else. Le., we listen to you
(and agree to do what you say is best) only if it does not appear to benefit you. Since this
is not supposed to happen if everyone was truthful, the fact that you contest the decision
suggests that someone lied. (Compare to the way “whistle-blowers” tend to be treated by
the media vs. the organization they criticize.) 5

A less “plausible” component is the “shouting match,” especially since shouting is cost-
less. Jackson (RES, 1992) investigates whether the same result can be obtained with bounded
mechanisms. For the case of implementation in undominated strategies, he shows that the
answer is negative and that only strategy-proof social choice functions can be implemented.”

Remark. Muller and Satterthwaite (1977) have shown that if [C] > 3 and P contains all
preference profiles then no monotone choice function has no veto power.

‘ this implies that the sufficiency
part of Maskin’s result applies only to choice rules or on limited domains.

Example (Solomon’s trial with money). Osborne and Rubinstein, pp. 190-1. Obser-
vation: the 2 X 2 version of example 190.1 truthfully implements f. (e é,;/atu: #

3.4. Subgame Perfect Imﬁlementation (with money)

Example (Solomon’s trial redux). Once money is introduced, it is possible to implement
the choice function

L

fz) = (1,0, 0)
f (il) = (27 0, O)
where the first coordinate denotes the woman who gets the baby and the next two denote

the payments made by the two women, respectively, in a subgame perfect equilibrium as
follows. Suppose that the value of the baby to the true mother is strictly larger than M

10What about “modulo games”? Check!

19
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P € XienA}. (Note that each p; is a preference profile and p is a profile
of preference profiles.) Clearly the profile 5* in which P} = I for each
i € N is a Nash equilibrium of (G*, %) and g*(p*) ¢ bita ! o

Note that it does not follow from this result that in an analysis of
Nash implementation we can restrict attention to games in which each -
player announces a preference profile, since the game that truthfully -

Nash-implements the choice rule may have non-truthful Nash equilibria
that generate outcomes different from that dictated by the choice rule.
Note also that it is essential that the set of actions of each player be
the set of preference profiles, not the (smaller) set of preference rela
tions, as in part (b) of the revelation principle for DSE-implementation
(Lemma 181.4). " :

- We now define a key condition in the analysis of Nash impl‘émentai;ion.
DEFINITION 186.1 A choice rule

¢ € f(X) and ¢ ¢ f(>=') there is some player i € N and some outcome
beCsuchthatc?;,,-b'andb&c. :

v

That is, in order for an outcome ¢ to be selected by a monotonic choice
rule when the preference profile is Z but, not when it is %’ the ranking of

¢ relative to some other alternative must be worse under %/ than under -

Z for at least one individual.

An example of 2 monotonic choice rule f is that in which {f(?\;) isthe

set of weakly Pareto efficient outcomes: f(Z)={ceC: thereisno be
C such that b >; ¢ for all i€ N} Another example is the rule Fin
which f() consists ofevery outcome-that is a favorite of at least one

player: f(X) = {c € C: there exists i € N such that ¢ Z: b for all
beC}. -

= PROPOSITION 186.2 Let (N, C,P, G) be an environment in which G is

the set of strategic game forms. If a choice rule is Nash-implementable
then it is monotonic.

Proof. Suppose that the choice rule f:P — C is Nash-implemented by
a game form G = (N, (4;),g), c € f(Z), and ¢ ¢ f(>’). Then there is
an action profile a for which g(a) = ¢ that is a Nask equilibrium of the
game (G, %) but not of (G, >’). That is, there is a player j and action
a@; € Aj such that g(a_;, a3) =7 g(a) and g(a) =; g(a—j,a}). Hence f is
monotonic, 5]
< EXAMPLE 186.3 (Solomon’s predicament) The biblical story of the Judg-
ment of Solomon illustrates some of the main ideas of implementation
theory. Each of two women, 1 and 2, claims a baby; each of them knows

Chapter 10. Implementation Theory 3

f:P = C is monotonic if whenever .

187
10.4 Nash Implementation

who is the true mother, but neither can prove her motherl?ood, Sololnfon
tries to educe the truth by threatening to (Eut the baby in }::o‘, 1€ )l;imci
on the fact that the false mother prefers this outcome to t ft mt: o
the true mother obtains the baby while the true mother- pre ;rsba.bglt0
the baby away than to see it cut in twot.' Solomon can give the y to
& thers or order its execution. '

“t;:';:ﬁ:’e l:tloa be the outcome in which the baby is given .to ml:)it:}lzle;;;
b that in which the baby is given to mother 2, and d tl'lat in wl _
baby is cut in two. Two preference profiles are possible:

6 (1 is the real mother): ¢ =1 b>1d andb>2d 20
N ® ' .
6’ (2 is the real mother): ¢ >} d >{ band b >5 a >3 d.
Despite Solomon’s alleged wisdom, the choice rule f deﬁned by f(8) =
{a} and f(¢') =.z{b} is not Nash-implementable, since it is not n'xon;;
tonic: a € f(f) and a ¢ f(8') but there is no outcome y and player ¢ € :
such that a =-; y and y >} a. (In the biblical story’ Solomon succeeds :n
assigning theN baby to the true mother: he gives it to the only wor;a.n bc;
announce tﬁat she prefers that it be given to the other wt,)ma.n t a.n
cut in two. Probably the‘women did not-perceive Solomon’s instructions ‘
as a strategic game form.) . ‘ |
The next -result provides sufficient conditions for a choice rule to be
Nash-implementable. - )
DEFINITION 187.1 A choice rule f: P - C has no vetc;- pov:eran
¢ € (=) whenever for at least [N] — 1 players we have ¢ ; y for
yeo. ' ) . . .
PROPOSITION 187.2 Let (N,C,P,G) be an enmmnment.m :::m;g : S
the set of strategic game forms. If |[N| 2> 3‘ then any choice rule tha
monotonic and has no veto power is Nash-implementable.

ic choice rule that has no veto power.
Proof. Let f:P — C be a monotonic :
We construct a game form G = (N, (4;),9) tha.t -Nash-;mplem:unt:ﬂ b 1::;
follows. The set of actions A; of each player ¢ is the §et ?f %}e
(p:, i, ), Where p; € P, ¢; € C, and m; is a nonnegative mte_g;r}.l
vz:l;les: a((pi, ¢i,m:)ien) of the outcome function are defined &s follows.
« Tf for some j € N and some (Z,c,m) with ¢ € f() we have
(pi> i, i) = (5, ¢,m) for all i € N\ {j} then - da . Yepne
. ¢ - jfctj (4] jof:';ij/ P A 27/«. ):
g((Pi’ G m,)) = {C ifc—<j Ci- ) wats So\«{“,’y e m/ )
‘ N

ewyo sept ptly ote pojes s gl b

7
S n
;) ‘y:y! (= f,J-.I t/



Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User


Jisey et
< Otherwise g{(p;, ¢;, m;)) = cx where & is such that my; > m; for all :

the exceptional player announces an outcome that, under the preference

'k € N\ {i} we have c¢* >3 b for all b € C. (Note that player i, unlike

FRTE]

J\D,‘}}'\ /\/‘Q\?:/L g

j € N (in the case of a tie the identity of k is immaterial).

This game form has three components. First, if all the ‘i)layers agree |
about the preference profile & and the outcome ¢ € F{) to be im-|

napter 1U. implementation Theory 3

plemented then the outcome is indeed c. Second, if there is almost
agreement—all players but one agree—then the majority prevails unless

relation announced by the majority, is not better for him than the out-
come announced by the majority (which persuades the planner that the
preference relation announced for him by the others is incorrect). Third,
if there is significant disagreement then the law of the jungle applies: the
player who “shouts loudest” chooses the outcome.

We now show that this game form Nash-implements f. Let c € ()
for some 2 € P. Let a; = (I, ¢,0) for each ¢ € N. Then (qa;) is a Nash
equilibrium of the game (G, 7} with the outcome c: any deviation by any
player j, say to (*',c,m’), that affects the outcome has the property
that the outcome is ¢ g; ¢ m]%!b !

Now let (a}) be a Nash equilibrium of the game {(G,Z} with the
outcome c*. We show that ¢* € f(77). :

There are three cases to consider. First suppose that e} = (', ¢*, m')
forall i € N and ¢* € f('). If ¢* ¢ F() then the modotonicity of
f implies that there is a player i € N and b € C such that ¢* >/ b
and b >; ¢*. But then the deviation by player i to the action (t,';: 0)
changes the action profile to one that yields his preferable outcome 5.
Hence ¢* € ().

Second suppose that af = (&/,¢*,m/) foralli€ Nand ¢* ¢ f(&'). If
there is some ¢ € N and outcome b € C such that b >; ¢* then player i
can deviate to (=’,b,m"} for some m"” > m', yielding the preferred
outcome b. Thus ¢* is a favorite outcome of every player; since f has no
veto power we have c* € f(7).

Third suppose that a] # a for some players i and j. We show that
for at least | V] —1 players ¢* is a favorite outcome, so that since f has no
veto power we have ¢* € f(X). Since [N| > 3 there exists h € N\ {1, j};
ay, is different from either a} or a}, say a}, # a;. If there is an outcome
b such that b > ¢* for some k € N \ {i} then k can profitably deviate
by choosing (>, b,m") for some m” > my for all £ # k. Thus for all

the other players, may not be able to achieve his favorite outcome by
deviating sin_ce all the other players might be in agreement.) O

184 Nash Implementation 189

The interest of a result of this type, like that of the folk theorems in

Chapter 8, depends on the reasonableness of the game form constructed
in the proof. A natural component of the game form constructed here
is that a complaint against a consensus is accepted only if the suggested
alternative is worse for the complainant under the preference profile
daimed by the other players. A less natural compenent is the “shouting”
part of the game form, especially since shouting bears no cost here.

The strength of the result depends on the size of the set of choice ruiles

that are monotonic and have no veto power. If there are at least three
alternstives and P is the set of all preference profiles then no mono-
tonic choice function has no veto power. (This follows from Muller and

Satterthwaite (1977, Corollary on p. 417); note that a monotonic choice
fanction satisfies Muller and Satterthwaite’s condition SPA.) Thus the
proposition is of interest only for either a nondegenerate choice rule or
a choice function with a limited domain. ’

The game form in the proof of the proposition is designed to cover all
possible choice rules. A specific choice rule may be implemented by a
game form that is much simpler. Two examples follow.

EXAMPLE 180.1 Suppose that an object is to be assigned to & player in
the set {1,...,n}. Assume first that for ali possible preference profiles
there is a single player who prefers to have the object than not to have
#t. The choice function that assigns the object to this player can be
implemented by the game form in which the set of actions of each player
is { Yes, No} and the outcome function assigns the object to the player
with the lowest index who announces Yes if there is such a player, and
to player n otherwise. It is easy to check that if player 1 is the one who
prefers to have the object than not to have it then the only equilibriom
outcome is that i gets the object.

Now assume that in each preference profile there are two (“privileged”)
players who prefer to have the object than to not have it, and that we
want to implement the choice rule that assigns to each preference profile
the two cutcomes in which the object is assigned to one of these players.
The game form just described does not work since, for example, for the
profile in which these players are 1 and 2 there is no equilibrium in which
player 2 gets the object. The following game form does implement the
rule. Each player announces a name of 2 player and a number. fn-1
players announce the same name, say ¢, then obtains the object unless
he names a different player, say 7, in which case j obtains the object.
In any other case the player who names the largest number gets the
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Mine Hers Mine+

cov M L Mine | (0,e,¢) | (1,0,0) | (2,¢, M)

chaow ;
4 7,/\3{ (2,0,0) | (0,e,¢) | (0,0,0)
(10,907

Mine+ | (1, M,€) 1(0,0,0) | (0,2¢,2)

Figure 180.1 A game form that implements the choice function considered in
ample 190.1 in which the legitimate owner obtains the object. (Note that the ex
in the boxes are outcomes, not payoffs.)

object. Any action profile in which all players announce the name
the same privileged player is an equilibrium. Any other action profile #
not an equilibrium, since if at least n — 1 players agree on a player who'
is not privileged then that player can deviate profitably by announcing
somebody else; if there is no set of n— 1 players who agree then there i
at least one privileged player who can deviate profitably by a.miounchg
_a larger number than anyone else.

© EXAMPLE 190.1 (Solomon’s predicarnent) Consider again Solomon™
predicament, described in Example 186.3. Assume that the object
dispute has monetary value to the two players and that\Sclomon
assign the object to one of the players, or to neither of them, and
also impose fines on them. The get of cutcomes is then the set of triples
{z, m1, mg) where either z = 0 (the object is not given to either player) |’

or z € {1,2} (the object is given to player z) and m; is a fine imposed :

on player i. Player i’s payoff if he gets the object is vy — m; if he

is the legitimate owner of the object and vy, — m; if he is not, where [
vg > vz > 0; it is —m; if he does not get the object. There are two |
possible preference profiles, & in which player 1 is the legitimate owner | !

and >’ in which player 2 is.

King Solomon wishes to implement the choice function f for which |
f(=) = (1,0,0) and f(>=') = (2,0,0). This function is monotonic: for |

examPle (19 0, 0) 2 (23 0, ('UH’I"'UL:)/2) and (21 0, (”H‘l"”L)/z) >J2 (1) 0, 0)’
Proposition 187.2 does not apply since there are only two players. How-
ever, the following game form (which is simpler than that in the proof
of the proposition) implements f: each player has three actions, and the
outcome function is that given in Figure 180.1, where M = (vg +vg)/2
and € > 0 is small enough. (The action “Mine+” can be interpreted Kg

Lew ﬁfﬁL :Vf/cwku = ‘[
> | Ao eq,

Z""l*\ Jeaw 3 e

Subgame Perfect Equilibrium Implementation 1w

1_ mine 2 minL(z,e,M)
lnsi hers]

(27 07 0) (11 0’ 0)

: i i he choice function given
are 191.1 An extensive game form that xmplefnents 't o g
Example 190.1. The vector near each terminal history is the outcome associated
k that history:

Given our interest in the structure of the game forms that we con-
struct, the fact that the game form in this example is sin‘lple and lacks a
sshouting” component is attractive. In the next section (see Exam-
ple 191.2) we show that the choice function in the example can be
implemented by an even simpler scheme. :

ExercisE 191.1 Consider the case in which t;here are two indiyidu‘a]s.
Let N = {1,2} and C = {a, b, c}, and suppose that there are tw0p<3ss11.>le
preference profiles, 2 with @ >1 ¢ 1 band ¢ >2 b >2 a.and ' with
ex,a>,band b>h crja Show that the choice fux}ctmn J defined
by f(z) =aand f(X)=bis monotonic but not Nash-implementable.

10.5 Subgame Perfect Equilibrium Implementation

Finally, we turn to the case in which the planner uses extensive game
forms with perfect information and assumes that for any preferefx?e Pro—
file the outcome of the game may be any subgame perfefct eth.lmm.n
(SPE). To motivate the possibilities for impl?menting choice rules in this
case, consider Solomon’s quandary once again.

© EXAMPLE 191.2 (Solomon’s predz’c:zment'} The choice function f giv'en
in the previous example (180.1) is SPE-implemented by_ the following
game form. First player 1 is asked whether the object is hers, ”If she
says “no” then the object is given'to player 2. K she says “yes . the.n
player 2 is asked if he is the owner. If he says “no” ‘then the c).bgect is
given to player 1, while if he says “yes” then he obta:ms the object and
mustpayaﬁneosta.tisfying v < M < vm Wh{lep}ayerlhasi.;o
pay a small fine € > 0. This game form is illustrated in Flgu.re 1?1.1 (in
which outcomes, not payoffs, are shown near the terminal histories).

e B S

a8 an impudent demand for the object, which is penalized if the other/}\
| player does not dispute the ownership.) ,
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and the value of the baby to the pretend mother is strictly smaller than M. Consider the
following extensive form game

mine mine
1 — 2 —  (2,¢,M)
hers | hers o
(2,0,0) . (1,0,0)
Remark. Notice that this game gives rise to Nash equilibria that are outside f. When 1 is
the real mother she can choose “hers” because she expects 2 to “irrationally” choose “mine.”

We now show that every social choice function can “almost” be implemented in a SPE.
Suppose that, ’
N ={1,...,n} is a set of individuals.

C* is a set of deterministic consequences;

C = {(L,m): L is a lottery over C* and m € R"}

m; is interpreted as the fine paid by player 7. m; is not transferred to another player;
Each player has a utility function u; : C* — RR; it evaluates the consequence or lottery (L, m)
according to Ey, [u; (¢*)] —my;

A profile of preference profiles is given by (us)ien-
P = U™ is a finite set that excludes constant functions;
G is the set of extensive game forms with prefect information and consequences in C.

Definition. A choice function f : P — C* is virtually SPE-implementable if for every € > 0
there exists an extensive game form I' € G such that for every profile v € P the extensive
game (I, u) has a unique SPE in which the outcome is f (u) with probability greater than
or equal to 1 —e.

Proposition (Osborne and Rubinstein, 193.1).

Remark. Abreu and Matsushima (Econometrica, 1992) proved a similar result for imple-
mentation via iterated elimination of strictly dominated strategies in strategic game forms
(which is a little stronger than SPE because it rules out the existence of other equilibria).
The variant that is presented here is due to Glazer and Perry.

3.5. Conclusion

Observe that relaxation of the notion of implementation implies an expansion of the set of
implementable social choice rules as follows:

notion of implementation classes of social choice rule
dominant strategy implementation & dictatorial social choice rule
= monotone social choice rule

Nash implementation

virtual subgame perfect implementation <

(Fy) T

monotone social choice rules + no veto power
every social choice rule

Leel K e cef srele
/ ;L \ ;:) rLL“/o / " t/./

,"GJ”“":&“'{’:". erou // lo o~y ch?,,/(,ﬂ," wedani gy /



194 Chapter 10. Implementation Thao

If player 1 is the legitimate owner (i.e. the preference profile is z)th
the game has a unique subgame perfect equilibrium, in which player
chooses “hers” and player 1 chooses “mine”, achieving the dest

outcome (1,0,0). If player 2 is the real owner then the game has ;

unique subgame perfect equilibrium, in which he chooses “mine” an
player 1 chooses “his”, yielding the outcome (2,0,0). Thus the gam
SPE-implements the choice function given in Example 1980.1. '

The key idea in the game form described in this example is thak
player 2 is confronted with a choice that leads him to choose truth-
fully. If he does so then player 1 is faced with a choice that leads her
to choose truthfully also. The tricks used in the literature to construct

game forms to SPE-implement choice functions in other contexts are in
the same spirit. In the remainder of the chapter we present a result that
demonstrates the richness of the possibilities for SPE-implementation.

Let C* be a set of deterministic consequences. We study the case in

which the set C of outcomes has the form

C = {(L,m): L is a lottery over C* and m € RV}.

If (L, m) € C then we interpret m; as a fine paid by player i. (Note that .

m; is not transferred to another player.) .!
‘We assume that for each player 1 there is a payoff function\u;: C* — R

such that player ¢’s preference relation over C is represented by the 9

function Ez{u;(c*)) — my; we identify a preference profile with a profile
(u:)ien of such payoff functions and denote Eu;(c*) simply by u;(L).
We assume further that P = UY, where U is a finite set that excludes
the constant function. The set G of game forms that we consider is the
set of extensive game forms with perfect information with consequences
in C.

The notion of implementation that we explore is weaker than those
studied previously: we construct a game form I' € G with the property
that for any preference profile u € P the game (I',u) has a unique
subgame perfect equilibrium in which the desired alternative is realized
with very high probability, though not necessarily with certainty. More
precisely, we say that a choice function f:P — C* is virtually SPE-
implementable if for any € > 0 there is an extensive game form T € G
such that for any preference profile u € P the extensive game (T, u)
has a unique subgame perfect equilibrium, in which the outcome is f(x)
with probability at least 1 —e.

e ~ 4
) Lk & NI

- 3 - 4 x--
par— \
- ko
N =2 ¢ 7
s e L J["-J La‘{\z );)_)r/
. Y/ ! .
N R -[ai):;/JJAW b oo A 1A

(1s2.1)

vy

Subgame Pertect HGuIliDIDAT INPICIICHLELUL

WOPOSITION 193.1 Let C* be a set of deteministz'c. co-{zsequenc;.z.zlst
C,P.G) be an environment in which |N| >3, C is given bg;eg ab‘.me,
U¥, where U is the (finite) set of payo_ﬁ." functions _descnat. m’z
G is the set of extensive game forms with perfect mfoz'n:t zfm Zl ,

equences in C. Then every choice function f:P — C* is virtuaily
PE-implementable.

0 i that since for no payoff function in U are all out-
‘ i:;;terlelzzf for any pair (v,v") of distinct payoff functions fhere
pair (L(v,v"), L' (v,v")) of lotteries over C* such t’hat 'ugL(t;, v;i)ee Z
*(v,v')) and v'(L'(v, v")) > v/ (L{v,?")). (A player’s cl.101ce ; reon
lotteries L(v,v') and L' (v,v") thus indicates whetl‘xer his pa.}:o ’)
onisvorv .)'For any triple {z, v, v') of payoff ﬁ‘mctl.ons let L*(u,v,v

the member of the set {L(v,v"),L'(v,7)} that is prgferred 1,7y u_
hen for any pair (v,v’) of payoff functions we h?.ve (L (’L:, 'vl,v )):)—)
max{u(L(v, ”’))’u(LI(”:'U’))}’ so that u(L*(u, t:a” N = ?(L, (w azf’)'v
&= any payoff function u'. Further, w(L* (u,u,w')) > u(l* (v Uy U ) t o
Now suppose that for some pair (v,v') a player who announces
payoff function u is given the lottery L*(u, v, :7’ ). Let B be the minimum,
‘ower all pairs (u,u’) of distinct payoff ﬁmctions,. of the average gain, ove;'
all pairs (v,v"), of any player with payoff function u from announcing
rather than u':

B= min (‘L Z {u(L" (u, v,v')) —u(L*(u’,v,v'))}) ’
(u,u")EW W
where W is the set of all pairs of distinct payoff functions an;i M ;
U|([U] — 1) (the number of members of W). By the argument above
ha;ZrBe:eg' € > 0 we construct 2 game form that has K +1 Staﬁ::
(K being defined below). Each stege consists of | V| substage; :
N= {1,...,n}. In substage ¢ of each of th(;,vﬁrst K stages'pfzter
announces a preference profile (a member of U™ ); in substage 7 of stage
K + 1 player ¢ announces a payoff function .(a mem‘t;er of U)l .

For any terminal history the outcome, which consists of a oti;ery a.nK
a profile of fines, is defined as follows. Each stage k for k = 1,'{ . ]} ;i
contributes to the lottery a consequence with probability (1—€)/K. Ifin
stage k all the players except possibly one announce the sa{ne ;‘ne.ferencz
profile, say (u:), then this consequence is f({u:)); otherwise it is som
fixed consequence ¢* € C*.

@5‘4’6‘& Bt <o ',Jee[B'Q. JOUJ /qje/{ {p«..
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Each substage of the last stage contributes the probability €/|N| to the
lottery. This probability is split into M equal parts, each corresponding
to & pair of payoff functions. The probability ¢/|{N|M that corresponds
to (i,(v,v')) € N x W is-assigned to the lottery L*(u,v,v"), where o

is the payoff function that player ¢ announces in stage K + 1.

As for the fines, a player has to pay § > 0 if he is the last player in the
first K stages to announce a preference profile different from the profile
of announcements in stage K + 1. In addition, a player has to pay &
> fine of §/K for each stage in the first K in which all the other players
announce the same profile, different from the one that he announces.
{In order for the odd player out to be well-defined we need at least three

players.)

Finally, we choose 6 so that eB/|N| > & and K so that (1—€)D/K +

§/K < 8, where

D=ma§{v(c) —v(d)veU,ceC*and d € C*}.

We now show that for any (u;) € UV the game (T, (u;)), where I is the

- game form described above, has a unique subgame perfect equilibrium,
in which the outcome is f{{u;)) with probebility at least 1 —e. We
first show that after every history in every subgame perfect equilibrium

_each player i announces his true payoff function in staii K+1. ¥
o,

player ¢ announces a false payoff function at this stage then, relative to
the case in which he announces his true payoff function, there are two
changes in the outcome. First, the lotteries contributed to the outcome
_ by substage i of stage K + 1 change, reducing player i’s expected payoff
by at least eB/|N|. Second, player i may avoid a fine of § if by changing
his announcement in the last period he avoids being the last player to
announce a preference, profile in one of the first K stages that I different
" from the profile of announcements in the final stage. Since eB/|N| > §
the net effect is that the best action for any player is to announce his

true payoff function in the final period, whatever history precedes his
decision.

We now show that in any subgame perfect equilibrium all players

announce the true preference profile (u;) in each of the first K stages.
Suppose to the contrary that some player does not do so; let player i
in stage k be the last player not to do so. We argue that player i
can increase his payoff by deviating and announcing the true preference
profile (u;). There are two cases to consider.

. AU
Botes ‘

« If no other player anhounces a profile different from {u;) in stage k
then player i's deviatjon has no effect on the cutcome; it reduces the
fine he has to pay by 8/ K, since he no longer announces a profile
different from that anmounced by the other players, and may further
reduce his fine by § (if he is no longer the last player to announce
a profile different from ()

« If some other player announces a profile different from (u;) in stage k
then the componentjv of the final lottery attributable to stage k may
change, reducing player #'s payoff by at most (1-€¢D/K. In ad-
dition he may become the odd player out at stage k and be ﬁ.ned
§/K. At the same time he avoids the fine § {since he is deﬁmf.ely
not the last player to snnounce & profile different from (u,)) .Smc:e

(1-€D/K +§/K <8, the net effect is that the deviation 18
profitable. |

We conclude that in every subgame perfect equilibrium every player,
sfter every history at which he has to announce & preference profile,
announces the true preference profile, so that the outcome of the game
assigns probability of at least 1 —€ to F((:))- a

The geme form const{mcted in this proof is based on two ideas. Stag_e
K +1is designed so that it is dominant for every player to announce his
true psyoff function. In the earlier stages a player may w1sh to announce
a preference profile different from the true one, since by doing so he may
affect the final outcome to his advantage; but no player wants to be the
last to do so, with the copsequence that no player ever does so.

Notes

The Gibbard-Satterthwaite theorem (181.2) appears in Gibbard (1973)
and Satterthwaite (1975). For alternative proofs see Schmeidler and Son-
nenschein (1978) and Berberé (1083). Proposition 184.2 s due to Groves
and Loeb (1975); the result in Exercise 185.1 is due to Greex'l and Laf-
font (1977). Maskin first proved Proposition 187.2 (see Maskin (1985));
the proof that we give is due to Repullo (1987). The discussion In
Section 10.5 is based on Abreu and Matsushima (1992), W]Z.I.O prove a
result equivalent to Proposition 193.1 for implementation via iterated
elimination of strictly dominated strategies in strategic game forms; the
variant that we present is that of Glazer and Perry (1992). The analy-
S of Solomon’s predicament in Examples 186.3, 190.1, snd 191.2 first
appeared in Glazer and Ma (1989).



Exercises

1. Osborne and Rubinstein, exercise 191.1, p. 191

9. Mas-Colell, Whinston, and Green, exercise 23.BB.1, p. 925

3. Mas-Colell, Whinston, and Green, exercise 23.BB.2, p. 925

4. Mas-Colell, Whinston, and Green, exércise 23.BB.3, p. 925

5. Is the closure of majority rule monotonic? Prove or give a counter-example.

6. Consider an auction enviropment with complete information about buyers valuations
for the good. Suppose that the objective is to assign the object to the player who
has the highest valuation for it. Does a second price auction Nash-implement this
objective? Does a second price auction truthfully Nash-implement this objective?

7. Is the monotonicity condition alone sufficient for truthful Nash implementation? Prove
or provide a counter example. : C =%« I/{”

ui(i/ o,t) Wt e)+F:

4. Mechanism Design

4.1, Introduction

The first part of this lecture is based on chapter 7 of Fudenberg and Tirole’s text “Gamge
Theory,” and on chapter 23 in Mass-Colell, Whinston, and Green's (MWG) “Microecono
Theory.” _

Mechanism design is a subfield of the general theory of implementation. It is distingyished
by the fact that (1) it typically assumes that agents have quasi-linear utility functions; (2)
it focuses on the case in which the agents are asymmetrically informed; azk (3) it focuses
on truthful implementation. That is, it typically abstracts away from the fact that a mech-
anism that implements a certain desired outcome function may also have other, undesired,
equilibria. éﬁ Adsp, in mechanism designlhe objective is usually to maximize some objective
function such as social welfare rather than implement a given social choice function.

This focus allows mechanism design to consider decidedly more applied problems. The
subjects that have received attention in the mechanism design literature include (for each
problem, only the first or “classic” reference is given):

— monopolistic price discrimination (Mussa and Rosen, JET 1979),

— optimal taxation (Mirlees, 1971) e ? A

— auctions (Myerson, 1981) Al A oll(

— public good provision (Mailath and Postlewaite, RES 1990) / N A

— “market design,” or the organization of trade, (Myerson and Satterthwaite, 1983)

— regulation of a monopolist (Baron and Myerson, 1982; Laffont and Tirole, 1986, 1987),
and more.
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Mechanism design usually employs the following set-up.

N = {1,...,n} is a set of individuals. The space of alternatives is given by X x R™ where X
is an arbitrary set of consequences with no particular structure, and R™ represent monetary
transfers to the individuals. Individuals’ payoffs depend on their types, which they draw
from a common prior distribution P on the set of types © = ©; X -+ x ©y,. The distribution
P is assumed to be commonly known among the agents.'! In many applications, it is further
assumed that agents’ types are independent and one-dimensional, or that P = H P; and

: €N

Q; = [gz_ ,'u_i] . A player’s type describes the private information of the player. A player may
either have private information about its preferences, or about its beliefs, or about both its
preferences and beliefs. '

The environment is called a private values environment if each player i’s payofl function is
given by u; (z,;,0;) where z € X denotes a consequence and t; € R denotes the payment
made to 4. The general case, where u; may depend on other players’ types is called interde-
pendent values. For simplicity, we focus our attention in this section on the case of private
values. Interdependent values are interesting and give rise to the famous “winner’s curse”
but are harder to work with. '

The environment is said to have quasi-linear payoff functions if w; (z,t;,0) = Vi (z,0) +
t; for every i € N, and either ug (z,t,0) = Vy(z,0) — Y ey ti (self interested principal)
or ug (z,t,0) = Soro Vi (z,0) (benevolent principal). In the latter case, it is also usually
required that the sum of players’ payments sum up to the cost of whatever decision is
implemented (ex-post budget balance).

A mechanism is a game form (N, (Ai);cy » g) where g : (Ai);cy — X X R is a mapping
from the set of actions available to each player to a set of consequences X and to a payment
to'each player. In particular, the game form (N, (0:);cy (2,t)), which we denote more
simply by {z (8) ,t (0)} is referred to as a direct revelation mechanism.

The Revelation rinciple implies that for any Bayesian Nash equilibrium under any mech-
- anism, there exists an incentive compatible direct revelation mechanism {z (¢),¢(0)} that
implements it in the sense that its truth-telling equilibrium induces the same outcome as
the original equilibrium.'* The proof of the revelation principle is similar to the proof of
the revelation principle for Nash implementation. Given a mechanism M = (N, A, g) define
a direct revelation mechanism (z (8),t(6)) so that it implements the same outcome as M

11 More generally, it can be assumed that there is a prior P, for each player. We say that players’ beliefs are
consistent if P; = P Vi where P is the common prior. For an interesting discussion about the generality of the
common prior assumption (CPA) and the assumption that the modlel itself is commonly known among the
players, see the discussion between Aumann and Qul in Econometrica 1998. Aumann is a strong proponent
of the common prior assumption. In this discussion, Gul argues, convincingly in my opinion, that the
assumption that the model itself is commonly known among the players, which in itself need not involve any
loss of generality, does not imply the common prion assumption.

12This direct revelation mechanism may also have other equilibria. But these are seldom investigated. This
is not a problem if the goal is to establish an impossibility result, but it could undermine the practicability
of a possibility result.
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for 4 report their types truthfully under <CE t} By not reporting his type
(x,t) player 4 can induce a different outcome (one that would have obtained
in equilibrium /when players’ types are (0;,6_;)). This cannot possibly benefit player i be-
cause if it did, then player i would also have had a profitable deviation opportunity from the
equilibrium that is played under M. A contradiction.

Definition. A direct revelation mechanism {z (6),¢(0)} is (Bayesian) incentive compatible
if every type of every agent prefers to report its type truthfully provided all other types do,
or “

Ey_, [ui (z(0),;(0),60:)] = Ey_, [uz <1 (051-,9%-) s (/6\@', 04) ,Qiﬂ for every i € N, and 0;,0; € @Z-.‘

Another important definition is the following.

Definition. A direct revelation mechanism {az (0),t(0)} is ex-post efficient if

z(0) € axgmaxZV T, 9 for every 6.

xeX i—0

Ex-post efficiency thus requires that an efficient decision be made for any profile of
players’ types. The notions of ex~ante and interim efficiency are defined in a similar way.
A mechanism is said to be interim afﬁcz'eﬂ if, at the interim stage, when each player knows
its own type but not the other players’ types, there is no other mechanism that gives each
type of each player a weakly higher expected payoff and a strictly higher expected payoff to
at least one type of one player. A mechanism is said to be ex-ante efficient if, at the ex-ante
stage, before the players even learn their own types, there is no other mechanism that gives
each player a weakly higher expected payoff and a strictly higher expected payoff to at least
one player.

Ex-ante efficiency implies interim efficiency which, in turn, 1mphes ex-post efficiency.
It follows that a mechanism that is incentive compatible and ex-ante efficient is incentive .
compatible and interim efficient, and a mechanism that is incentive compatible and interim
efficient is incentive compatible and ex-post efficient. A mechanism that is incentive compat-
ible and ex-ante, interim, or ex-post efficient, is sometimes called ex-ante, interim, or ex-post
incentive efficient, respectively.'3

Example. Suppose that N = {1,2}, ©; = O3 = {a,b}, players’ types are mdcpendent
and equally likely, and uy (z,0) = uz (z,0) = +/z. Suppose that total income is equal to1in

13Gee Holmstrém and Myerson (Econometrica, 1983) for an interesting discussion about these notions and
the relationship among them.
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every state of the world. The mechanism

a b
z(@)= a|1,0]01
b|0,1]1,0
is ex-post efficient, but not interim efficient. The mechanism
a b
z(0)= a|1,0|1,0
b|0,1]0,1

is ex-post efficient and interim efficient, but not ex-ante efficient. And the mechanism

a b -
z(0)= al1/2,1/2|1/2,1/2
0 b|1/2,1/211/2,1/2

is ex-post efficient; interim efficient, and ex-ante efficient.

Suppose that the cost of implementing decision x € X is given by Co (z) . To be “practi-

cable,” a mechanism shoyld often also be budget balance (
' Vo(fp ’}1 LI R [ %f/ ,/-/ Lo fve L XL

Definition. A direct 1evelat10n mechanism {z (0),t (¢ )} is ex-post budget balanced if ;eher fa

TL

Zt, = —Co(z (0)) for every 6.

=1
Remark. The notation is a little awkward because ¢; is the payment to player <. Observe
that unless 27, ; (§) < —Co (x(#)) the mechanism would not collect enough payment to
cover the cost of implementing = (4); and unless 3 i, ¢ (§) > —Co (2 (9)) whatever extra
payment has been collected has to be taken out of the system so as not to distort incentives.

Remark. In some cases, if the principal has access to a well functioning credit market,
it may be possible to replace ex-post budget balance with ex-ante budget balance, or the
weaker requirement that:

Ey = —FEyp[Co (2 (9))]-

Z t; ()

Another constraint that is often relevant is voluntary participation, or individual ratio-

nality.
Definition. A direct revelation mechanism {z (6),¢(8)} is (interim) individually rational if
Eo_, [ui (z (0),t:(0),0:)] =0  for every i € N, and 0; € ;.

Observe that the right-hand-side of the IR constraint may depend on the particular
problem that is studied, and may therefore be different from zero.
Ex-post and ex-ante IR are defined analogously.
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2. Groves Mechanisms

Groves mechanisms have been discovered by Vickrey (1961), Clarke (1971) and Groves
(1973). Vickrey and Clarke have each described an example of a particular Groves mech-
anism, and Groves identified the entire class of such mechanisms. Groves mechanisms im-
plement the ex-post efficient outcome in dominant strategies in quasi-linear private values
environments. (Contrast with Gibbard and Satterthwaite’s Impossibility Theorem).

Definition. A direct revelation mechanism {z (0) ¢ (0)} is incentive compatible in dominant
* strategies if truth-telling is a dominant strategy, or

ug (x (0) ,4:(0) ,05) > u; (w (?0\1, 9_i> Lt (/Q\i,OM,,;> ,0¢> for every 6 € ©, and 57; € 0,

Denote the ex-post efficient decision by z* (0) E:argmax St o Vi(z,0;) . Define

4 (7) - 2v<@>>www

where 7; (+) is an arbitrary function of 0.

Definition. A direct revelation mechanism {z* (0),t* (9)} is called a Groves mechanism.
By changing the function 7, it is possible to span the entire collection of Groves mechanisms.

Definition. A Vickrey-Clarke-Groves (VCG) mechanism is a Groves mechanism where
()= T4 (- 0)8) - S0 (1.).0)
J#

for some §; € ©;. Usually 0; is i’s lowest possible type, or the type that contributes least
to social welfare. In auctions for example 8; = 0. So in VCG mechanisms the payment to
each player is equal to the player’s contribution to social surplus, not taking the player’s own
payoff into account. A

Proposition. A Croves mechanism {z* (0),¢* (0)} is incentive compatible in dominant
strategies and ex-post efficient.

Proof. Because * is ex-post efficient by definition, it is enough to show that {2* ( 0),t* (0)}
is incentive compatible in dominant s‘rrategiw Suppose to the contrary that some type; of

player 4 strictly prefers to announce () instead of 8; for some types 0_; of the other players.
It follows that <= @

LVA (= (80-), 0k> WS - .v( (az,9_1>?0i>+}: Vi (o @,ow?j,e‘,,-)m (9_¢))
5 (0,0-0),65) + 7 (0-) F STV (" (0) ,00) +AUBL)

24

> Vi(a" (0:,0-),0) +
J#

e e > 2/ 25




which contradicts the assumption that «* (0;,0_;) € argmax y i, Vi (z,0:) . |
zEX

Intuitively, the idea of a Grov f qlech‘fi)(ni;m i§ to choose each agent’s transfer ¢; in such

" W o Adefieal 4 . .
a way that agent i’s payoff e Phi same-as the total surplus to all the agents (given their
reports) up to a constant. Because agent i already internalizes its own surplus, it suffices
to set the transfer equal to the total surplus minus its own surplus, up to a constant. Note
that i’s report affects its payment only through its effect on the decision z* (6) . Hence s
payment is equal to the externality it imposes on the other players, up to a constant. For this

reason, the payments under Groves mechanisms are sometimes referred to as “externality

4
payments.” ﬂ/“ //. vate o uw:m-w*.:

Example. A sealed bid second price auction is a VOG mechanis Suppose that there are

n bidders for an object and a seller, and that it is commonly known that the value of the
object for the seller is zero.
The set of consequences X is given by:

X—:{(q07q17'-'aQn):Qi20 VZEN, aﬂd Zqﬁ:l}

i=0
The bidders’ types are their willingness to pay for the object.
The ex-post efficient decision rule is given by x* 0) = (0, .., 0, " 1l ,0, ...,0) if i’s
ith place

willingness for the object is positive and is the highest.
In a VCG mechanism, the bidder with the highest valuation, suppose it is ¢, should win

the object, so
20 = S ()3) +n (0

J#

= T (/9\—1'> )

because V; = 0 for every j # 4. For all other bidders j,

§0) = 2wl (0).8) +7 (0)

ki#j

= w3} 4 (02)
7 (05) = - {8}

which means that the winner pays max {/Q\k} _ which is equal to the value and bid of the

In a VCG mechanism,

bidder with the second highest valuation, and losers pay nothing. This is Vickrey’s famous
second price auction. The highest bidder wins and pays the second highest bid. Losers pay
nothing, and it is unimportant how ties are resolved.
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Remark. Green and Laffont (1977) show that the converse of the proposition above is also
true in the following sense: if the type space is “rich enough” in the sense that no restrictions
are imposed on the set of agents’ types ©, or that w; (x,t;,0;) = Vi (z,0; ;) -+ t; ranges over
all the possible functions V; as 6; ranges over ©;, then if a mechanism implements the ex-
post efficient outcome in dominant strategies, then it is a Groves mechanism. See MWG
(Proposition 23.C.5) for a straightforward proof. A

Remark. Another important result of Green and Laffont (1977) is that if the set of agents’
types is sufficiently rich (so that agents may hold any payofl function V;), then no Groves
mechanism is ex-post budget balanced. For example, consider a public good problem with
two agents and two types each (high and low), and denote the cost of the public good by .
c. Suppose that the public good should be efficiently provided unless both agents’ have low
types or low willingness to pay. _

Denote agent i’s payment under a Groves mechanism by ¢; <t91, 92) Agent i’s payment
under a Groves mechanism is

’ (,\) b\j + 75 </0\J> if 51 + 52 _>_ C
‘ - T4 <§3> if /él +/0\2<C
and the sum of the agents’ payments is given by
n - 5¢+aj+Tj (@) b </é]> if /9\1 +~5220
t (0) +t; (0) - 7 i\ S
T (91) + T (03> if 01+0;<c
The definition of i's payment under a Groves mechanism implies:

(1) i (H, L) —t (L, L)
2) i (H H)—t (L,H) =
(3) (L, H)—t2(L, L)
4)  t(HH)—t(H, L)

O~ O ™~

and Ex-post budget balance requires that:

5) B(LD)+R(LL) = 0 S /f

6) (L H) b (L H) =-c —

(7) i (H L)+t (H, L) oea /7 !/
(8)  ty (H,H)+ty(H, H)

= C

/
= _C !
o/

Algebraic manipulation reveals that these eight equations are inconsistent. This can be seen
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by manipulating the matrix that describes these equations as follows:

[ 1LL 1LH 1HL 1HH 2LL 2LH 2HL 2HH

—

M -1 o 1 0 0 0 0 0 L

(2) 0 -1 0 1 0 0 0 0 0

(3) 0 0 0 0 —1 1 0 0 L

4 o o 0o 0 0 0 -1 1 0

(5) 1 0 0 0 1 0 0 0 O

@ o 1 o0 0 0o 1 0 0 ¢

(7 0 0 1 0 0 0 1 0 c

\® o o o 1 0o 0 0 1 ¢
(1) + (5) implies the vector
(9) (0,0,1,0,1,0,0,0, L)
(2) + (6) implies the vector
(10) (0,0,0,1,0,1,0,0,¢c)
9)—(7) impiies the vector
(11)  (0,0,0,0,1,0,—1,0,L—¢) -
(10) — (8) implies the vector
(12) (0,0’0’0’0,1’07_“17()) °+". 6 ¢
(11) + (3) implies the vector | why A
‘ (13)  (0,0,0,0,0,1,—1,0,2L —c) M:;:rd
(12) — (13) implies the vector. | @t L ¢ 7@;3/":),
(14)  (0,0,0,0,0,0,1,~1,c = 2L) Cadn ! TE o

Finally, (14) + (4) implies the vector ' ' o ek ( 4] -f“‘[/“f)

_ - felvefnai £ aves |
— 15 0,0,00,0,000,-2), ot

which implies that ¢ — 2L = 0. A contradiction to the assumption that 2L <c.

This failure of budget balance is probably the main reason that Groves mechanisms are

—= gffseldom used in practice. In fact, when they are used, it is usually in contexts where budgg
balance is unimportant because there is an agent who acts as a “budget breaker.”

Tt is straightforward to make a Groves mechanism ex-ante budget balanced by adjusting

the functions 7; (+), but at the possible price of violating the agents’ individual rationality

constraints.'4 Tt sl wd o,
4 (bgerve that the second price auction is dominant strategy implementable and budget balance} Heow- S
ever, the=seter has no private informatio% s the “richness” condition is violated. 4o '{%14
ff é‘-du/ "tLL J QZA (‘) R s:f (?J«.,q I '& ‘ _/ ‘[,P df'\ *
e) &i:':b‘csbl 1_/_/“‘7‘ fL% y; 28 Sy ’.[u-é,g'&
’ QCU"_)'\‘ ;~Il * /Th"’(a'h

T e
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4.3. AAGV mechanisms

AAGV mechanisms are named after Arrow (1979), and d’Aspremont and Gérard-Varet

(1979), who discovered these mechanisms independently. AAGV mechanisms implement , /]em

the ex-post efficient outcome and are ex-post budget balanced. However, they are only
Bayesian incentive compatible, not incentive compatible in dominant strategies.

The idea is that instead of being paid the surplus of the other agents based on their
reports as in a Groves mechanism, each agent is paid the expected value of the other agents’
surpluses based on its own report. Then each agent again internalizes the social surplus and
has no incentive to distort the decision by manipulating its announcement, and the functions
{7s (") },cy can be chosen to ensure budget balance.

Let
£ ()= 5 [0 (e (10:) )| (0.
J#

Observe that the first term is independent of the other players’ reports, and the second term
is independent of 4’s own report, which implies that it does not affect 7’s incentives.

Lemma. A direct revelation mechanism {z* (6),t* (9)} is Bayesian incentive compatible.

Proof. We have to show that /9\1- = §; maximizes 1’s expected p’ayoff, or

By, [vi (o (8:,025) 6) + 4 (8:,0-4) ],

which is equal to

Fy

e (0. 0+ (e (0.).8)

J#

up to a constant. Observe that the function 7; @4) is independent of #’s report and does
not affect i’s incentives. The same reasoning that applied in the case of Groves mechanisms
implies that ; = 0; maximizes the function

|7 (27* </éi>9—‘i> 19i> + ZVj (96* (@ﬂ—i) 703')
g
for each possible realization of 6._;. It therefore follows that 52- = @, maximizes the expectation

v <m* (@-,94) ,9i> + ZV] (m* (ai,g—i> ,03'):‘
J#

as well.

By,

..........................................................................................




Example. Consider the “AAGV version” of the 2nd price auction. In a 2nd price auction,

for the winner %: ‘
ZVJ (.CU* (@-,6’_0 ,9j> =0
J#

for loser j
2% ( (% ) ,9k> = max {0}
k#j
and for all bidders
Tk (0—k> = —%1215{9

- In the AAGV version of the 2nd price auction

£ @) = B, {Zv;- (ac (@,9_1),9])
J#4

= Pr (ma_xﬁj < @) -0+ Pr (maxﬁj > b\z> Ey_, [max@
J# J#i #4

N
\/‘4’/“/

For example, if n = 2 and the bidder’s valuations are uniformly distri_buted on the unit
interval, this is equal to: £, ' ' ‘

- o

The expected payoff to a bidder who reports /9\z is therefore given by

~ ~\ 140, 1
i 0; < ‘91')'——%—“
g +1{1 5 5
The first-order condition is: N N
1-6;, 140,
A
0; + 5 5

if and only if 0; = 0;.
But if it is known that the other player reported @ = .5, and say that my valuation is
.25, then reporting truthfully yields

1+.26 1
(1-— 25)'—%———*—v—-—031
while reporting a little over .5 yields
1+.
25+(1—.5)--—;—§-—= 125

..........................................................................................

We now show how the functions 7; 5_¢) can be chosen in such a way that {z* (9) .t* ()}
satisfies budget balance, or such that > i, t¥ (6) = Co (z* (9)) for every 0.
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III. SORTING / Odverye  sdfecdlon w=lae 7

ot Caunel

) . . . effect Lo Lanble
Here we discuss a family of models in which there is interaction between

'
- .

v
an informed agent who has private information and an uninformed one who does =
not have private information. The models in this family have the special Mo ]
structure of the uninformed (the "principal") making a move ("offers a Ak}mnl

contract") to which the informed (the "agent") reacts. Many important economic
models of asymmetric information belong to this family: models of second
degree price discrimination, optimal income taxation and regulation.

IIT.1. Second Degree Price Discrimination

TIT.1.1. The two types case

The example presented here 1is based on Mussa and Rosen (JET, 1978). A
monopoly produces a product which can be of different quality levels. Quality
will be denoted by q. Each consumer wants a unit. There are two types of
consumer: & and B. Their utilities of buying a unit of quality q at the price
p are e¢q-p and Bq-p respectively. Their respective numbers are N, and Ny
respectively. Thus, all consumers appreciate quality, but they differ with
respect to their willingness to pay for it.

The cost of producing y units of quality q is c(q)y where c(0)=c’'(0)=0
and, for >0, c’(q)>0 and c'’'(q)>0 .

The following diagram depicts the technology and consumer preferences in
the (q,p) plane. Note that an indifference curve of an « type crosses an
indifference curve of a P type only once. This is an instance of what we call

the single crossing property.
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Let q; be defined by i=c’(q;), where i=«,p. The first best arrangement
is that quality q; is produced and distributed to type i consumes. If the
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Start at q, and q and look at the maximal prices that satisfy the
constraints. By reducing q, marginally and adjusting the prices, there is a
zero first order effect on the profit made on each type « consumer, but
positive first order effect (at the rate of B-a) on the profit made on each
type P consumer.

The main insights of this example are: (i) The seller’s effort to sort
the customers creates a distortion of the menu of products relative to the
first best solution; (ii) The distortion is concentrated at the lower end.
(iii) The higher type gets some positive surplus, while the lower type gets a
none. These characteristics of this solution, translated into the appropriate
context, appear repeatedly in sorting problems: non-linear pricing, optimal
taxation, regulation etc.

This problem discussed here is essentially identical to the problem of
optimal non-linear pricing by a monopoly, which is also a second degree price
discrimination problem where consumers are sorted by different price-quantity
combinations.

involves a characteristic technique which appears in similar forms in
virtually all such analyses. The purpose of this part is to present this
technique.

The buyers'’ set is a continuum with measure 1. Buyers's types are
indexed by b and are distributed on [0,B] according to distribution function
F. The von-Neumann-Morgenstern utility of a buyer with valuation b who gets
quantity q for the payment t is v(q,b)-t _and the utility of no purchase is 0.
The seller has constant per unit cost c.
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monotonicity of q() implies that it is differentiable a.e. Part (ii) then
directly follows from application of the envelope theorem to v(q(b),b).

) = Y. 4 ) ~HL R = G (ak0.d) D™ )
From part (ii) of the proposit on (s0-4)7 ) P Frome mav
— ) = T o N4

e et

(4) U(b)=U(0)+£sz(Q(X),X)dX-
The interesting fact is that t(b) does not appear in this expression. Type
surplus is expressed only in terms of the quantities bought by all lower types

and of U(0). Put in other words, t(b) can also be expressed in terms of q()
and U(0), since by the definition of U(b) and (4)

(3) - t(b)=V(Q(b),b)-U(b)=V(q(b),b)-fngE(q(X),X)dX-U(O)

The observation of (4) will be used next to express the seller's profit
in terms of the schedule q(b) and the number U(0).

Proposition 2: The seller’s profit SH is given by

(6) SH = QIB[V<q(b),b)-cq(b)-(1-F(b)/f(b)Vz(q(b),b)]f(b)db - U(0).

Proof: Total buyers’ surplus, SU, is (
utey Ly poods ‘ 9 :'W» fy
(7) SU = [BU(b)dF(b) =(U(B5)-J‘B[dU(b)/db]F(b)d)1ii——{
)
U(0)+[B(vy(q(b),b))db-[Bvy(q(b) ,b)F(b)db = U(0)+[Bv,(q(b),b)[L-F(b)]db

The seller’'s profit on a valuation b buyer is H(b)=t(b)-cq(b). The surplus
associated with the sale to type b is U(b)+H(b)=v(q(b),b)-cq(b). Therefore,
the total surplus, SU+SH, is

(8) SU+SH = [P[v(q(b),b)-cq(b)]1£(b)db
Subtract (7) from (8) to get SH=(SU+SH)-SU as given by (6). QED

So far we have only shown that, given an arbitrary schedule of
quantities and required payments, higher consumer types will choose to buy at

least as much as lower types, and that the seller’s profit can be expressed in
terms of selected quantities, q(b), be[0,B], and the lowest type'’'s utility,
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One aspect of the model that was crucial for the elegant treatment of
this problem is the separability and linearity of the utility function in the

payment. /f 1 :
A : ,' a ;U )l V bl )
ﬂ/ AL V-e 3 \'"7'12‘ AN (?/;_) Z //L\ﬁ’?ﬁﬁj 9 .)Q/?/"o. &,-/‘~i> /1/';‘“’ AN
P Vo Sep °
roblem Set III R oy
1. Let W={a,b,c}. P(a)=P(c)={a,b,c}), P(b)={b,c}. A={B,N). (N,w)=0 for all w. é—,/

u(B,a)=-2, u(B,b)=-2, u(B,c)=3. q(w)=1/3, for all w.

(i) Which conditions does P satisfy?

(ii) What is the optimal decision rule for the problem (W,P,A,u,q)?

(iii) Find a partition Q which is coarser than P and such that the optimal
decision rule with respect to it will give higher expected utility than the
optimal rule you found in (ii).

2. Consider a market for a homogeneous product. The cost of production is
C(y)=cy. Each buyer is interested in getting one unit of the product. There
are two types of consumer: 1 and 2. Thelr utilities of buying a unit at the
price p are a;-p respectively, where ay>a,;>c. Their respective numbers are N;
and N, respectively.

(i) Characterize in terms of the parameters the monopoly price and quantity in
this market.

(ii) Find the prices and quantities sold by the perfectly discriminating
monopoly.

Suppose that the firm cannot identify buyers'’ types, but can offer
different packages of the form (p,t), where p is a price and t waiting time
for the product. Let w; denote the cost incurred by buyer type i=1,2 by
waiting a time unit. Assume wy>w;.

(iii) If it turns out that it is profitable for the firm to make only a single
offer (p,t), what would be the value of t in such an offer?

(iv) Show that, if it is profitable for the firm to offer more than one (p,t)
package, it has to be that N,(w,-wy)>N,;w;. Explain why.

(v) Assume that the parameters satisfy a;-wi(az-a;)/(wy-wy)>c and Np(wy-wy)>Nyw,.
Describe the profit maximizing menu of (p,t) packages and the resulting
consumers’ behavior. :

(vi) Compare the profit and welfare associated with cases (i) and (v). In what
sense does (v) involve distortion?

3. Modify the continuum types model discussed in class as follows. Each buyer
is interested in getting only one unit. The VNM utility of a type b from
getting a unit at price p is b-p and the utility of no purchase is 0. Assume
that [1-F(b)]/£(b) is a decreasing function of b,

(i) Suppose the seller is constrained to charge just one price. Show that the
profit maximizing price satisfies p = ¢ + [1-F(p)]1/£(p).

(ii) Suppose that the seller can commit to a menu of offers [q(i),p(i)], where
q(i) is the probability with which a consumer who chooses offer i will get a
unit and p(i) is the price he will pay in the event that he gets a unit.
Modify the analysis done in class to deal with this case. Prove that the menu
that maximizes the seller’s profit consists of a single price, which is the
one you found in (i), and that any buyer can get the good at this price with
probability 1.
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I11.1.2. Continuum of types

The two-types example already captures many of the main ideas of sorting
models. However, much of the literature deals with the multi-type case and
this involves a certain technique which appears in similar forms in virtually
all such analyses. The purpose of this part is to present this technique.

The buyers'’ set is a continuum with measure 1. Buyers's types are
indexed by v and are distributed on [0,V] according to distribution function
F. The von-Neumann-Morgenstern utility of a buyer with valuation v who gets
quantity q for the payment t is u(q,v)-t, where u(0,v)=0. The seller has
constant per unit cost c.

Technical assumptions:
(1) F is twice differentiable. Let f denote its density.

(ii) u is twice continuously differentiable u;>0, up>0, u;,<0 and u;>0.

Thus, u is increasing and concave in q and a consumer with a higher v
has both a higher willingness to pay for a given quantity and a higher
marginal willingness to pay. The condition u;,>0 is the single crossing
condition which appears repeatedly in this literature.

The seller can commit to a menu of offers from which the buyers can
choose. We shall denote the menu by [q(i),t(i)], ieI, where q(i) and t(i) are
the quantity received and payment made by a consumer who chooses offer i. The
purpose of the analysis is to characterize the menu that maximizes the
monopoly’s profit under the assumption that consumers will react to it
optimally. We shall consider only menus which form compact sets so that the
consumers’ problem would be well defined.

Given a menu of such offers, let [q(v),t(v)] denote the offer selected
optimally by type v. Let U(v) denote buyer v's utility from his choice
U(v)=u(q(v),v)-t(v).
The seller’s profit on a type v buyer is t(v)-cq(v). The seller's total profit
is then

(1) H =

=

[t(v)-cq(v)1£(v)dv.

The fact that [q(v),t(v)] is optimally selected by type v implies that, for
any v and v',

(2) . u(q(v),v)-t(v) = u(q(v'),v)-t(v'),
and also
(3) U(v)= 0, for all v.

Conditions (2) is the incentive compatibility (IC) constraint, and

condition (3) is the individual rationality (IR)or voluntary participation
constraint. Since, for all v, U(v)2U(0), condition (3) can be replaced by
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where the last inequality follows from u;,>0. First rearrangement and then
substitution from (7) yield

U(v) 2 u(q(v'),v) - [u(q(v'),v') - U(v")] = u(qv'),v) - t(v'),
which means that [q(),t()] satisfy the IC constraints (2).
(ii) The monotonicity of q() implies that it is continuous a.e. Let v be a

continuity point of q(v), and rewrite (6) as

up(q(v'),8") (v-v')=[up(a(v'), %) dxsU(v) -U(v' ) [ua(q(v) , %) dx=tz(q(v) ,0) (v-v"),
v v

where 6,8’ are between v' and v. Divide through by (v-v') and take the limits
as v' approaching v. Since v is a continuity point of q(), limy . up(q(v),8)=
lim,. . uy(q(v’),08')=uy(q(v),v). Thus, U() is differentiable at any continuity
point of q() and dU(v)/dv=u,(q(v),v). Also, from (6), U() is continuous at all

points. Therefore, for all v, pu 7,
, I
8 U(v)=U(0 V). ;
(8) (v)=U( )+[UZ(Q(V) v) L Lt il M/

; 6(-“‘\"/' :/‘ /.,/M L
cac}% /

(9) t(v)=u(q(v),v)-U(v)=u(q(v),v) -fUz(Q(X) ,x)dx-U(0).
: 0

It follows that

QED

Remarks: (1) The single crossing property of the preferences was used in
establishing monotonicity of any q() which satisfies the constraints (2).

(2) Another way to derive part (ii) is to notice that the monotonicity of q()
implies that it is differentiable a.e. Part (ii) then directly follows from
application of the envelope theorem to u(q(v),v).

Proposition 1 simplifies the maximization problem in two important ways.
First, it shows that the set of menus which satisfy the constraints has a
relatively simple form: it consists of all the menus in which q() is non-
decreasing, t() is given by (9) and U(0)20. Second, it allows to substitute
t() out and express the maximand and the constraints only in terms of q() and
U(0). '

Substitute (9) into (1) to get

oo

(10 H = [[u(a(v),v)- [u(q(x),x)dx-eq(v) JE(v)dv-U(0)

0

Integration by parts of the middle term yields
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seller’s problem as he contemplates increasing q(v) by a small increment dq
for some mass of buyer types around v. This will increase the revenue from
each buyer type in that neighborhood by approx1mate1y&Kq(v) v)dq and hence the
expected revenue by [uy(q(v),v)dq]f(v). On the other hand this wilil increase
the informational rent of all higher types by approximately u ,(q(v),v)dq and
hence decrease the expected revenue by [uy,(q(v),v)dv][1-F(v)]. Thus, the
tradeoff facing the seller is exactly captured by the derivative of the
virtual utility.

(3) The term [1-F(v)]/f(v) is the inverse of the hazard rate and the condition
that it is a decreasing function of v is often invoked in this literature for
the purpose it serves here.

(4) The separability and linearity of the utility function in the payment
helps the presentation, but is not crucial for deriving this type of results.
If the buyer’s utility is given by u(q,t,v), then the single crossing
condition requires d{ui(q,t,v)/uy(q,t,v)]/dvs0. See Fudenberg-Tirole'’'s text
for analysis of this case.

Problem Set III

1. Let W={a,b,c) P(a) P(c)={a,b,c}, P(b)=(b,c}. A={B,N}. (N,w)=0 for all w.
u(B,a)=-2, u(B b) , u(B,c)=3. q(w) 1/3, for all w.

(1) Which conditions does P satisfy?

(ii) What is the optimal decision rule for the problem (W,P,A,u,q)?

(iii) Find a partition Q which is coarser than P and such that the optimal
decision rule with respect to it will give higher expected utility than the
optimal rule you found in (ii).

2. Consider a market for a homogeneous product. The cost of production is
C(y)=cy. Each buyer is interested in getting one unit of the product. There
are two types of consumer: 1 and 2. Their utilities of buying a unit at the
price p are a;-p respectively, where ay>a;>c. Their respective numbers are N
and N, respectively.

(1) Characterize in terms of the parameters the monopoly price and quantity in
this market.

(ii) Find the prices and quantities sold by the perfectly discriminating
monopoly.

Suppose' that the firm cannot identify buyers’ types, but can offer
different packages of the form (p,t), where p is a price and t waiting time
for the product. Let w; denote the cost incurred by buyer type i=1,2 by
waiting a time unit. Assume wyo>wy.

(1iii) If it turns out that it is profitable for the firm to make only a single
offer (p,t), what would be the value of t in such an offer?

(iv) Show that, if it is profitable for the firm to offer more than omne (p,t)
package, it has to be that Ny(wy-wy)>N;w;. Explain why.

(v) Assume that the parameters satisfy a;-w;(az-a;)/(wy-wi)>c and Np(wy-wy)>Nywy.
Describe the profit maximizing menu of (p,t) packages and the resulting
consumers’ behavior.

(vi) Compare the profit and welfare associated with cases (i) and (v). In what
sense does (v) involve distortion?
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Suppose first that Cp (z) = 0. Define

T (@) = Ly_,

S (o (1.0-) 2)

J#

and let

i (0= - —nilsz (%) .

J#

f=

~—————> Observe that this implies that ) ", ¢} (5) =" (Tz </9\1> -1 > i Ly (:9})) = 0 for

—

every 6 as required.
Suppose now that Cy (z) is an arbitrary function. Consider the “fictional problem” where
the agents’ utility functions are given by

(2,0, = Vi (x,8) - 2@

-
and the principal’s cost is given by Co (z) = 0. Compute the IC and BB transfers for this
fictional problem, t; (-), and let

Goa" ().

n

70 =E() -

We show that the transfers {¢f ()} implement the efficient decision with budget balance in
the original problem. Budget balance follows from the fact that

> (h) - 3 (a0~ 20

_ (e ()

because }:f:lf,‘(@ = 0 for all 6. The fact that

x* € argmaxz Vi (z,0:)
€N

implies that
' z* € arg max Z Vi(z,0;) — Co ()
€N
so that {z* (0),t*(0)} is ex-post eflicient. Finally, incentive compatibility follows from the
fact that

V(o (6).0) +7 (6) -
QU0

31
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for every 9 and 0;. So, the fact that truthful reporting is an equilibrium in the fictional
problem under transfers t, implies that it is also an equilibrium in the original problem
under the transfers t*.

Remark 1. Notice that the same argument would work also if players’ types are not
independent. The function T has to be defined relative to the report)ed typg jas before, and
everything works in the same way. [ [ LD //o ’ —1775 / /,\, ) If

o Je tuL d{ 2 .
Remark 2. Although AAGV mechanisms can be made to satisfy ex-ante IR, they might

violate interim IR in “rich enough” environments. In the-mext section, we show that interim
IR may be incompatible with ex-post efficiency. For some problems, there are no ex-post
efficient budget balanced mechanisms that satisfy interim individual rationality.

Remark 3. Although they are budget balanced, AAGV mechanisms are a lot less practica-
ble than Groves mechanisms because they depend on the prior and preferences of the agents,
which are difficult if not impossible to verify in practice. '

4.4. Optimal Monopolistic Price Discrimination

Consider first the two type case and then the continuum case. Lar'* s A/, vy b

4.5. Bilateral Bargaining under Asymmetric Information ] N
C/AQJC A WA,

Some mechanism design problems (such as those encountered in theory ggmctions) admit the
existence of ex-post efficient, ex-post budget balanced, and individually rational mechanisms,
but others do not. The most famous result that establishes the impossibility of ex-post
efficient, budget balanced, and individually rational mechanisms is due to Myerson and
Satterthwaite (1983). Here, we consider a simpler 2 X 2 version of their model that is due to
Matsuo (1989). '

Consider the following mechanism désign problem. There is a buyer and a seller. The
buyer is interested in buying an object which is owned by the seller. The buyer’s value
(type) for the object is either vy or vy. The seller’s reservation value (cost, type) is either ¢;
or ¢y. Suppose that each profile of types is equally likely (i.e., the buyer’s and seller’s types
are independent, and both the buyer and the seller are equally likely to be of either type).
Suppose that the buyer’s and seller’s types are “symmetric” in the following sense:

C1 V1

k]
L A 2

2 A

e =~ — <
lexplain the sense in which this covers all the “interesting” cases]

A bargaining game is any game form that specifies a message set for each player and
a mapping from message profiles to outcomes, or the probability with which the buyer'
obtains the object and the price it pays. The revelation principle implies that if we are
interested in studying the range of equilibrium outcomes, then no loss of generality is entailed
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by restricting attention to incentive compatible and individually rational direct revelation
mechanisms. Individual rationality follows from the fact that trade is voluntary. Each trader
may refuse to participate in the mechanism if it does not give it a nonnegative expected
payoff.

A direct revelation mechanism is composed of two functions: t(c,v), which described
the expected payment from the buyer to the seller when their types are given by (c,v), and
q (c,v), which described the probability with which the buyer obtains the object when types
are given by (c,v). A direct revelation mechanism is thus characterized by the following

eight—'tuple <Q’17 q2, 93,44, 2‘;17 t2> t37 zl’—4>:

q(c,v) ¢ ¢ t(e,v) & ¢
U1 Q1 | 92 U1 t1 | to
Vg g3 | Q4 () 3 | ta

Let
u(v',v) = E.fvg(c,v)—t(e, V)]
hid,c) = Ey[t(c,v)—cqlc,v)]

Definition. A direct revelation mechanism (¢, q) is incentive compatible and individually
rational if and only if :

Uw) = ul,v)=u(,v) Yo, v € {v1,v2} (IC - B)
H (c) hic,c)>h(d,c) Ve, d €{c,e} (IC-9)
Uw) > 0 Yve{v,v2} (IR~ B)
H(c) = 0 Ve e {c1,ca} (IR - S)

Remark. Alternatively, instead of focusing our attention on incentive compatible direct
revelation mechanisms we could consider the probability of trade and expected payment in
a BNE and denote those by ¢ (c,v) and ¢ (c,v). In this case, IC and IR would follow from
the fact that what we consider is a Bayesian Nash equilibrium. The fact that these two
approaches are identical illustrates, or rather is a proof of, the revelation principle in this
context.

Definition. A direct revelation mechanism (£, ¢) is ex-post efficient if ¢ (¢,v) = 1 whenever
v > ¢, or in matrix form: ‘
qle,v) ¢ o
V1 1
U 1 1

Proposition. There exists an ex-post efficient incentive compatible and individually rational
direct revelation mechanism (t,q) if and only if

o —v1 < (vg — ¢2) + (v — c1) (ie., iff D <24)
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Proof. We first show that if D > 2A, then no ex-post efficient mechanism exists. Suppose
to the contrary that such a mechanism exists. The IC constraint for vy implies

U (03) > vaBe g (¢, 01)] — Bt (¢,01)] + w1 Befa (¢, v1)] — viBe [g (¢, v1))]

U (vg) > U (v1) + (v —v1) Ee[g (c,01)] - (1)

Similarly, the IC constraint for ¢; implies
H(ct) > Hca) + (ca— 1) Eula (c2,0)] - , (2)

Ex-post efficiency implies that E. [q(c,v1)] = B [g (c2,v)] = 1. Plug this into (1) and use IR

— B to get
U(Ug)ZUZ;,Ul.

Similarly, (2) and IR — S imply
H(Cl) Z CQ;Cl.

Since vy and ¢; each occurs with probability %, the sum of the ex-ante expected payoffs is at
least

1 . . Vo — U1 Coy — C A+ D
. > = .
5 (U (vg) + H(cy)) > 1 + 1 7

But the maximum ex-ante surplus is

4A+ D
4 K

3 (02— )+ (=) + (0 —e) +0) =

which is smaller than A%Q if D> 2A. A contradiction.

Next, we show that if D < 2 A then the following direct revelation mechanism 1s incentive
"compatible, individually rational, and ex-post efficient: ¢ (¢c,v) = 1 if and only if ¢ < v, and
t(c,v) is given by the following matrix:

t(e,v) Ca
m (%] 0
Uy wte | ¢y

Intuition: The problem is to get the “high value” types vs and ¢; to reveal their types. To
accomplish this goal, these types are given the most fayorable prices possible if they reveal
their identity.

Ex-post efficiency, IR, and IC for v; and for ¢; are immediate. IC for vq follows from

1 vy +C 1 1
g 2= ) b (v — ) > 5 (v2 — ).
2 2 2 Nt 2 N
\ -~ - A A+D
A+
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2A+— > A+D
s 24> D.

IC for ¢, follows similarly. S

Remark. The ex-post efficient mechanism for the case where D < 2A is not incentive
compatible when D > 2A because in this case v, and ¢; would rather report v and ¢y,
respectively. If D < 2A, the benefit that vy and ¢; would obtain from reporting vy and co,
respectively, is too small relative to the lower probability they would get to trade, and so
ex-post efficiency is possible.

The remark above suggests that by replacing the ex-post efficient allocation rule ¢ (-, )
with the following allocation function

q* (C, U) C1 C2

7 p |0
Vg 1
. (2A+D , . . - .
where p = min 5D 1}, or as high as possible such that IC still holds, it is possible to
retain IC. Indeed, it can be shown that the mechanism (¢*,t) with this p and the following ¢
t{c,v) ¢ ¢
V1 Py, 0
Vg 2teL | pey

maximizes the ex-ante surplus of the buyer and seller. The argument is as follows. The
mechanism design problem is to find a mechanism {q1, g2, g3, qu, t1, ta, s, t4) where g; € [0, 1]
and t; € R for i € {1,...,4} that maximizes the objective function:

. ,
1 (q1 (v1 — 1) + @2 (v1 — ) + g5 (v — ¢1) + qa (V2 — c2))

subject to IC for the buyer

v Eelq (e, 1)) = Bolt (c,m)] = niBelg(c,v)] — Eelt (c,v2)]
N’ \....\,_../ N i’ N e
5(q1+2) Bty +ta) 5(g3+44) B(ta+t4)

v Eefg (c,v2)] — Eolt (c,v2)] > vaBlg(c,v)] — Eelt (¢, v1)]
N’ \._V_../ N e N man?
5(ga+qa) B(ts+ta) 5(q1+92) B(t1+13)

and seller
EJft (c1,v)] = c1Belg (c1,v)] > Beft (c2,v)] — c1Belq (c2,v)]
5(t1-+t3) B(g1+gs) SB(tat+ta) B(g2+qa)
— ey, 2, > — oIt LU
[ (c2,v)] — c2Bilq (e2,v)] = Ecft (c1,v)] — calelq (c1,)]
(t2+t4) B(gz+qa) B(t1+ts) 5(gq1+q3)
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and IR for the buyer and seller. Observe that this is a linear programming problem, and as
such, can be solved using known methods (and software). We proceed to present a direct
solution below.

Rewrite the IC and IR constraints as:

v (q1+qe) — (b +1t2) > v (gs+qa) — (ts +ta)
vo(gs +qu) — (ts+ta) > va(qn+q2) — (L +1t2)
(ti+ts) —cr(ant+as) > (t2+ta) —ci(ge+qa)
(ta+ta) —co(@e+aq0) = (t1+1t3) —calq+gs)
and
vi (@ + @) — (b +t2
v2 (g3 +qu) — (

(t1 +tg) —c1 (g1 + g3

)
ts + t4)
)
(ta +t4) — c2 (g2 + qu)

VAR AVARN AVARR AV

0
0
0
0

Step 1. We solve a relaxed problem in which we ignore the IC constraints of v1 and ¢y and
the IR constraints of vy and ¢;. We will later show that the solution satisfies these constraints.
The remaining IC and IR constraints are:

Vo (g3 +qu) — (ta+ta) = va(qi+qo) — (t1 +12)
(ti+t3) —ci(qn+q) > (ta+ta) —ci(ge+aqa)

and

v+ @) — (i +t) =
(ta+ts) —ca(ge+qu) >
Step 2. In the optimal solution g3 = 1. If not, then increase ¢z by d and #3 by md,

vy < m < co. Observe that this increases the value of the objective function and that the
choice of m implies that the IC and IR constraints are not violated.

Step 3. In the optimal solution gz = 0. If not, then decrease g, by d and #; by md,
vy < m < cy. Observe that this increases the value of the objective function and that the
choice of m implies that the IC and IR constraints are not violated. This implies that the
constraints can be further simplified as follows:

vy (14 qa) — (ts+1ta) > vaqn — (b +12)
(tr4ts) —cr(L+aq) > (to+t) —cq
and
nag — (t1 +to)
(t2 +14) — cota

VAR
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Step 4. The remaining IC and IR constraints are binding in the optimal solution. If not,
then in the first IC constraint increase ¢; by d and ¢; by vid. In the second IC constraint
increase g, by d and t4 by vid. In the first IR constraint increase g1 by d and ¢ by vod. In
the second IR constraint increase g4 by d and t4 by vid.

Step 5. The problem now becomes:
Maximize the objective function:

g1 (v1 — 1) + qa(v2 — c2)
subject to

vy (L4 qu) — (3 +ta) = voqu — (t1 +12)
(tl -+ t3) — Cj (1 + Q1) = (tz + 154) — C144

and

viqr — (b1 +1t2) = 0
(ta+1ts) —caqe = 0

Observe that if ¢i, g1, t1 = =, t2 = y,ts = 2, t4 = w is a solution to the problem, then so is
q1,qa, by = x+y,tg = 0,83 = z—y,tg = wW+Y. This means that we may restrict our attention
to solutions in which t; = 0, which simplifies the IR constraints to:

1 = v

la = Caqq

Upon plugging t; = 0 and these two equations into the IC constraints, we obtain

vo (1+qu) — (tg +coqs) = (vo— v1) 1
(g +t3)—a(l+q) = (e—a)au

Summing these two equations, we get

2A+ D =D (q + qu)

Thus, the objective function is maximized at a point where ¢1+qs = , or in particular
2A+ D

2D

where ¢y == q4 = which is smaller than 1 if D > 2A.

Remark. Myerson and Satterthwaite (1983) considered a similar model to the 2 x 2 model
presented here with a continuum of buyer’s and seller’s types. They showed that if the
supports of the buyer’s and seller’s distributions overlap, then ex-post efficiency is impossible.
Notice that in the case analyzed here, if D < 2A then ex-post efficiency is possible in spite

of the “overlapping” supports. TR ) Saw 1)
g @ ot A& . JU) 7!1‘ ’

- u/:
M J ‘?o%/ reret 37 - e A,,,a.é../ T 7{0'\/0,



4.6. Double Auctions

A double auction is a trade mechanism in which buyers and sellers are each required to post
bid and ask prices. These bids and asks are used to construct demand and supply functions,
respectively, and trade takes places at a market clearing price!® among the buyers who bid
at or above the price and sellers who bid below or at the price, with rationing on the long
side of the market, among low paying buyers or high asking sellers, if needed.
The double auction mechanism is attractive because it is simple. It does not depend on
the players’ payoff functions and beliefs, and it does not employ integer games, etc.
Myerson and Satterthwaite (1983) showed that in a etting with just one buyer and one
——. geller the 1/2-double auction has an equilibrium thg%ptimal in the sense of maximizing ‘
ex-ante efficiency subject to IC and IR. ’!’V_;z_ Df}p afte " ;i‘: /;3”7:{:”:3;‘_ i‘j . ‘%ﬂ“’" )
In a series of subsequent papers, Satterthwaite and Williams (together with Rustichini
and others) showed that as the number of traders increases the bids and asks in avny@
trivial equilibrium converge to the traders’ true willingness to pay and reservation values.
Therefore, equilibria are ‘asymptotically ex-post officient? They have also showed that the
double-auction is ‘asymptotically worst-case optimal” That is, every other mechanism has
an equilibrium that is not more efficient than an equilibrium of the double-auction for some
distribution of traders’ types. )
This work and subsequent generalizations provide a “micro” or “strategic” foundation
for “competitive” behavior and for the first welfare theorem.

4.7. Private Values Auctions

This lecture is based on Krishna’s “Auction Theory,” and on Milgrom’s “Putting Auction
Theory to Work.”

4.7.1. The Symmetric Model

A Single object is offered for sale.
There are N potential buyers or bidders who are interested in buying the object.'®
The valuation, or willingness to pay, of bidder ¢ for the object is X;. Since we analyze an
auction as a Bayesian game, X; also describes bidder i's type.

The X; are i.i.d. and distributed according to an increasing distribution function F' with
o continuous density f on [0,w]. The support of F' may be unbounded (w = 00).

Bidder 7 knows the realization z; of the random variable X;. Tt believes that other bidder’s
valuations are independently distributed according to I [explain how this is different from
a common values setting]

15Ty pically, there would be an interval [a, b] of market-clearing prices. A k-double auction where k € [0, 1]
refers to a double auction in which the price is equal to ka 4+ (1 — k) b.

16The number of bidders is exogenous. Bulow and Klemperer (AER, 1996) show that for a seller who
employs a “standard” auction, attracting one more bidder is more valuable to the seller than employing the
optimal auction. -
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Each bidder 4 is a risk neutral expected utility maximizer who seeks to maximize its
expected payoff, which is given by
Qi " Ti —Di
where g; is the probability that bidder 4 wins the object and p; is bidder 4’s expected payment.
Bidders are not subject to liquidity or budget constraints.

All the above, except for the realization of the bidders’ types is commonly known among
the bidders.

4.7.2. (Sealed Bid) First Price Auction

Description. Bidders submit their bids simultaneously.!” The highest bidder wins the
object and pays its bid. Other bidders pay nothing. In case of a tie, the winning bidder is
chosen randomly from among those who submitted the highest bid. '

We compute 'avBayesian—Nash equilibrium of the first price auction: Suppose that for each
bidder to bid 8 (z;) where 3 [0,w] — R is increasing and differentiable is a Bayesian-Nash
equilibrium of the first price auction.

A heuristic computation of (. The expected payoff to bidder 1 with valuation z who
bids b when other bidders bid according to 3 is given by

Pr (1 wins with b) - (z —b) = G (87 (b)) - (z — b)

where G = FN-1! denotes the distribution function of the random variable Y7, which is the
maximum of N — 1 independently drawn valuations that are drawn according to F' 18
Maximizing this expression with respect to b yields the first-order condition:

~1 /4
g (67 ()
-
B (67 ()
17Bidding need not be literally simultanous. What’s important is that bidders don’t know other bid-

ders’ bids at the time they make their own bids. So, for example, writing bids into envelopes qualifies as

simultanous bidding even if it’s not all done at the exact same time.
18(Observe that

(2 ~b) -G (5 () =0

Pr (1 wins with b) Pr(b> B(x),.... 8 (zn))
T = Pr(b>8 (mg)) ‘Pr(b> B (zn))
= (:1:2<ﬂ ®)) - Pr(zn < B~ (b))
(@<p @)
-1

(b))N 1
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where ¢ = G' denotes the density of Y; (recall that for any function f: X =Y, @—%l =

?7%33—)) Because bidding according to 3 is an equilibrium, b = §(z) (or B (b) = z) the
previous equation yields the following differential equation:

9®) s Ol =
2 - p@)-Gl) = 0
G(z)B (z) +g(x)B(z) = =xg(z)

or
d

(G (2) 6 (3)) = 29 (2).

Integrating both sides according to z yields:
G)6()= [ val)dy+0

(observe that the fact that G (0) = 0 implies that C = 0) or"

ﬁm=:&@fw@@

= EMh <al.

&

Remark. This derivation is heuristic because the differential equation is only a necessary
condition for equilibrium.

Remark. Observe that the fact that F is continuous and increasing implies that E [Y; [V < z] <
2 for z > 0. This formula also shows that the bid is increasing with N because the first order
statistic Y; increases with N.

We now show that 8" (z) = E[¥; |V1 < z] is indeed a Bayesian-Nash equilibrium of the
first-price auction. Suppose that all N — 1-bidders-bid-according to-, ! _We show that to bid

according to ' is a best response. It is not optimal to bid b > A" (w) . The expected payoff
to a bidder who has valuation z if she bids b is calculated as follows. Denote 8'(z) = b or

2= ()7 ).
M(bz) = G(2)(z—pB(2))

X
s
=
=
A
&

YNote that by L’Hopital’s rule:




where the 4th equality follows from integration by parts.
Sufficiency follows from the fact that

/G dy—< (@ — 2) /G‘ dy>

= G(2)(z—z)— /G’ydy

> 0

(6" (z),z) —1I (B (2),2)

regardless of whether z > z or z < z (demonstrate this on a figure with a plot of G).

Reserve Price. If the seller sets a reserve price r > 0, then bidders with valuations
below r cannot possibly win. A bidder with valuation r bids §'(r) = r in equilibrium
(because by bidding 7 it wins if every other bidder has a valuation below ). The analysis
above can be repeated to show that in this case 8! (z) = F [max {Y1,r} |V} < ] forz > r
and zero otherwise is a Bayesian-Nash equilibrium of the first-price auction. The fact that
E[max{Yy,r}|Y1 <z] > E[Y1 |1 <] for ¥ > r suggests that the seller may be able to
increase its expected revenue by setting a positive reserve price.

Uniqueness of Equilibrium. See Lebrun (IER, 1999) for a proof that an equilibrium
exists for the first price auction in private value environments and for sufficient conditions
it is unique. The method of proof used by Lebrun is based on the mathematical theory of
existence and uniqueness of solutions to systems of partial differential equations.

4.7.3. Second Price Auction

Description. Bidders submit their bids simultaneously. The highest bidder wins the object
and pays the second highest bid. Other bidders pay nothing. In case of a tie, the winning
bidder is chosen randomly from among those submitted the highest bid.

Bidding the true valuation is a dominant strategy in the second-price auction. To see
this, let b; denote the highest bid made by the other bidders and distinguish among the cases
in which z > by, < by, and z = b;.

Reserve Price. The setting of a positive reserve price by the seller has no effect on the
bidders’ incentives to bid truthfully. Bidding the true willingness to pay is still a dominant
strategy for the bidders. A positive reserve price may nevertheless increase the expected .
revenue to the seller in the event that the second highest bid falls below the reserve price.

4.8. Revenue Equivalence

The expected revenue to the seller in the second-price auction is equal to the expected value
of the second highest valuation, or the second-order statistic from among X, X, o X,
denoted Y, (recall that Y7 denotes the highest value from among the N —1 values Xs, ..., Xn).
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Because bidders in the ﬁrst—pfice auction bid E Y7 |Y; < x], the expected revenue to the
seller in a first price auction is given by

/E[YllYlSw]dFN(w) — BB V<2
- E[Y)

by the law of iterated expectation.?”

Since the first price auction is equivalent to the Dutch auction (where the price is lowered
until one of the bidders stops it and claims the object), and in private values environments,
the second price auction is strategically equivalent to the English auction (or the oral, or
open outcry auction), then the expected revenue to the seller under each one of these four
auctions is identical. ‘

We show that this equivalence holds more generally.

We relax the symmetry assumption. We denote the distribution of bidder i’s valuation
and its support by F; and X, respectively, and let X = &y X -+ x Xy.

The revelation principle implies that for every equilibrium of every auction there exists an
incentive compatible and individually rational direct revelation mechanism (@, M) that gen-
erates the same outcome, where @ : X — Ay (Ay = {(90, 0y,...,0n) 0 >0 and va—_o 0; = 1}
is the NV dimensional simplex) and M . X — RN, The functions Q and M denote the prob-
ability that each bidder wins and its expected payment, respectively, as a function of the
bidders’ types.

Given a direct revelation mechanism (@), M), let

g (%) = ; ‘Qi (ziy ) foi (z=i) do—
and

m; (ZZ)E/X IMi (25, 0—) i (w-i) dw_y

~ denote the expected probability of winning and the expected payment of bidder ¢ with report
2.

20Perhaps an easier way of seeing this is the following: the expected payment of a bidder with valuation
2 in the first price auction is

Gy X EYi|Yi <=z
The expected payment of a bidder with valuation x in a second price auction is
Pr[Win] x E [2nd highest bid |z is the highest bid]
= Pr[Win] x E[2nd highest value|z is the highest value]
= G(w)XE[Yllyl <ub]
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A direct revelation Inechdnisrn (@, M) is incentive compatible if
Gs (i) e — mq (20) > ¢ (2) @5 — ma (2)
for every x;, z; € X.
A direct revelation mechanism (@, M) is individually rational if
gi (i) @ — my (2;) > 0
for every x; € X;.

Proposition 1. A direct revelation mechanism (@, M) is incentive compatible if and only
if ¢; is nondecreasing for every ¢ and

U (z) = ¢ (@) z — my (30)
= U;(0) +/ g (t:) dt;.
0
Proof. If (), M) is incentive compatible then for every z;, z; € &;
Ui () = ¢ (@) wi — mi () > @i (2) 20 — i (2)
and , |
Ui (z1) = ¢ () 2 — ma () = @i () 2 — mi (23) -
It follows that
gi () (@ — 2z) < Ui () — Us () < qi () (zi — 2i)
from which it follows that ¢; is nondecreasing. Dividing by x; — #; and taking the limit as z;
tends to z; implies that
U; (2:) = ¢; (1)
whenever ¢; is continuous, which because of monotonicity of g; is for almost every x; € X;
(that is, it except possibly for a set of measure zero). The function U; (x;) is absolutely
continuous?! and as such it is the integral of its derivative, or such that U; (z;) = U; (0) +

T
0 % (ti) dti.
21Recall that a function f is continuous at a point  if for every € > 0 there exists a § > 0 such that

|f (') ~ f(z)] <&

if
|v" — x| < 6.

A function f is absolutely continuous if for every £ > 0 there exists a § > 0 such that

DI (@) = f ()l <e
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Conversely, suppose that ¢; is nondecreasing and U; () = U; (0) + [o @i (t;) dti. Incentive
compatibility is satisfied if and only if

Ui (z) > qi(z) @i —mi(z)

= q;(z) 2 —mi (%) + (%) mi — @i (%) 2

if and only if
Ui (z:) > Ui (2) + gi () (we— %)

for every z;, z € A;, if and only if

/m g (t) dty > ¢; (z) (@ — 2) -

The fact that ¢; is nondecreasing implies that this last inequality holds for every z;, z € Xi.
[

We thus have,

Proposition 2 (Revenue Equivalence Theorem; Vickrey, 1961; Myerson, 1981).
If the direct revelation mechanism (@, M) is incentive compatible, then for every 4 and type
z,;, z;'s expected payment is

mi(z:) = @ (i) @y — Ui ()

= g (®i) @i — /Om Gi (ts) dt; — U; (0) -

" for every finite collection {(z;,z})} of nonoverlapping intervals satisfying

n .
z |} — @4} < 6.
i=1

It can be shown (see, e.g., Royden’s “Real Analysis”) that a function is absolutely continuous if and only
if it is the indefinite integral of its derivative (i.e., F' (b) = F (a) + [, f () dw where f = 4y,

An example of a continuous function that is not absolutely continuous is (show first sinz and sin1/z)

.1
T sin—.
x

It should be noted that a monotone nondecreasing function is not necessarily absolutely continuous. For
example, the Cantor ternary function is continuous monotone nondecreasing on the interval [0, 1], is equal
to zero at zero and to 1 at 1, and has a derivative that is equal to zero a.e. on [0,1].

The function U; is absolutely continuous because

|U; (23) = Us (2)| < i — 2l

*

which tends to zero as z; approaches z;. More generally, it can be shown that any Lipschitz function is
absolutely continuous (see Royden). )

Finally, Krishna avoids dealing with absolutely continuous functions by showing that U is convex (U” =
¢’ > 0), which implies it is absolutely continuous.
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Thus, the expected payment in any two incentive compatible mechanisms with the same
allocation rule, @, that provide the lowest type of each bidder with the same expected payoff
U; (0) is equal.

Corollary. The revenue equivalence result implies that in the symmetric model, the first and
the second-price auctions, and the Dutch and English auctions generate the same expected
revenue to the seller, as would the all-pay auction, the third-price auction, and many other
auction forms. Observe however that the first and second price auctions do not induce the
same allocation rule in asymmeti“ic environments.

4.9. Optimal Auctions

The optimal auction, or the auction that maximizes the expected revenue to the seller is the
solution to the following problem:

N
max Eim; (X;
s 3 s ()

subject to incentive compatibility and individual rationality. 4 -
Proposition 1 implies

Bim ()] = [ me(o) fi (o) do
= /0% (i (i) m — Ui (23)) fi () dov
/OM % (xi')_xifi (23) dz; — /Ow /Om ¢ (t:) fi (2:) dtidz; — Ui (0)

By changing the order of integration,

/Ow,. /0 a (6) f; () dtidz; = /O - /“” 0 () f () dnadts

:/0( ~ F (8) 0 () d

T
it

which implies that

E [mi (X%)] = /Ow q; (xz) mzfz "E’L /o qz (3%) d.’ILL U (0)

= /Owi <9:z 1;? <> %)> qi (%) fi (%) dwy — Ui (0)

- [ (=52 e@r@a-no

The objective is thus to choose a mechanism (), M) maximize

Z/< ey e df””yU
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subject to incentive compatibility and individual rationality. By Proposition 1, incentive
compatibility is equivalent to the requirement that each ¢; be nondecreasing. Individual
rationality requires that U; (0) > 0, and since the objective is to maximize the expected
revenue to the seller, this implies that each U; (0) should be optimally set equal to 0.
Define '
1~ F (z)
fi (i)

to be the virtual valuation of bidder 4 with value ;.22 The seller’s problem is to maximize

Uy (3) = 33 =

Z/Xwi (z;) Qi () f () da.

This expression is maximized if for each z, Q; () is set equal to 1 if ¢ = arg | HlaXN {0, (z;)}
1€{1,...,

provided this maximum is nonnegative and zero otherwise (the tie-breaking rule is unimpor-
tant). If the virtual valuations are nondecreasing, the resulting ¢;’s are nondecreasing too
because if z; < x; then v, (z) < 4, (), and thus for every z_;, Qi (2, 7:) < Qs (i, 2),
which implies that

G (%) = Qi (zi,x—i) foi (xi) dz i < /X in (s, @mi) fi (@) dz s = g3 (33)

X

We have thus solved for the optimal auction for the “regular” case, in which the virtual
valuations are nondecreasing?®: () is defined as above, and M; is defined such that

mg (2:) = g (i) T3 — / g (t;) dt;
0
or , N
M; (m) = Qz‘ (33> Ty — / Qs (?fi, m_i) dt;.
0
More intuitively, observe that because

Qs (@) = { 1 if o () >Ihax{¢j (z;),0} for every j # i

0 otherwise

227 his virtual valuation may be interpreted as bidder i’s marginal revenue. Demand is given by ¢ (p) =
1— F'(p) where g is quantity = probability of purchase. Inverse demand is p (q) = F~! (1 — q) . The revenue
for the seller is p (¢) ¢ = ¢F~! (1 — q) . Marginal revenue is :

d -1 a1 q
d—q[qF (1-q)] = F (1“q)—?m
_ p~1—~F(p)
f(p)
= P (p).

See Bulow and Roberts (JPE, 1989) or Krishna's textbook.
23Many distributions, such as the uniform, normal, etc., are indeed “regular” in this sense.
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the winner is the bidder with the highest virtual valuation, and that the bidder pays

. Ty
T —/ Qi (ti, z—i) dti = yi (20)
Yi(@-i)
where y; (z_;) is egualday the lowest valuation with which 4 could still win the auction.?
Other bidders pay nothing.
This implies that in a symmetric environment, where all the virtual valuation functions
are identical, the second-price auction with a reserve price 7 that is such that 1, (r) =
—]%Q = 0 or r = ;' (0) is an optimal auction (notice that the optimal reserve price
is mdependent of the number of bidders, N). The revenue equivalence result implies that

the first-price auction with the fame eserve price, as well as many other auctlon forrrf are

optimal as well. f’”' he/matiVe vo!l Faife vy, Lojduil N
B (qd A y) f*"(i/“'} {b for A, sy

Remark. This derivation, including the revelation prmmpﬂa ’Eﬁe reveﬁue equﬁre'd %)fesult hd

and the derivation of the optimal auction appeared in Myerson (1981). Myerson (1981) also

contains a general solution for the case in which the virtual valuations are not necessarily

nondecreasing?® and some ideas about how to generalize the solution for the case in which

. 1474,
the bidders’ valuations are correlated, which was later solved by Crémer and McLean. (C em 1335 )

Remark. How important is the reserve price? Bulow and Klemperer (AER, 1996) show
that a standard auction with no reserve price and n + 1 bidders generates a higher ex-
pected revenue to the seller than an optimal auction with n bidders, which they interpret as
“optimal negotiations.” They interpret their result as establishing the superiority of “more
competition” over “optimal negotiations.”

4,10. Risk Averse Bidders

Risk aversion, namely the assumption that the payoff function of a bidder in an auction in
which it pays only when it wins is given by Pr {Win] x u (z — p) 4+ Pr [Lose] x u (0) where u is

24Does this similarity to the second price auction imply that under the optimal auction bidders have a

weakly dominant strategy to bid truthfully?
25Tn this case the ¢; need to be “ironed” to ensure their monotonicity. Ironing is similar to what a

discriminating monopolist who engages in 3rd degree price discrimination does. Suppose that

p = 100-29 0<¢<20
p = 70— .5¢ 20 < ¢ <100

Then marginal revenue is given by

MR = 100 -4q 0<¢<20
MR = 70-q 0<¢<20

Suppose that the marginal cost is equal to 40. In this case the monopolist operates as if it has an “ironed
out” MR curve that has MR = 40 for 15 < ¢ < 30. The way to implement this ironing is by selling it to

buyers with proba,bilityl/?)KBulow and Roberts, (pp. 1078-80).
JVE




concave, leads to higher bidding in the first price auction. To see this consider bidder 1 with
valuation z in a first price auction Fix the strategies of all the other bidders and suppose
bidder 1 bids b. Now suppose that this bidder considers decreasing his bid slightly to b —A.
If he wins the auction with this lower bid, this leads to a gain of A. A lowering of his bid
could, however, cause the bidder to lose the auction. For a risk averse bidder, the effect of a
slightly lower winning bid on his wealth level has a smaller utility consequence than does the
possible loss if this lower bid, were, in fact, to result in his losing the auction. Compared to
a risk neutral bidder, a risk averse bidder will thus bid higher. Put another way, by bidding
higher, a risk averse bidder “buys insurance” against the possibility of losing.

Risk aversion does no affect bidders’ behavior in a second price auction, where bidding
the true valuation is still a weakly dominant strategy. It follows that risk aversion does not
affect the expected revenue to the seller in a second price auction, but increases the expected
revenue to the seller in a first price auction.

4.11. Renegotiation

One of the practical concerns of mechanism design theory is that players might have incen-
tives to change the rules of the game they are playing. Although in some cases the mechanism
designer can prevent such changes, in many situations it is impossible or nearly impossible to
do so, especially when a change in the rules of the game, contract, or mechanism is mutually
beneficial for the players. Such mutually consensual changes, which are known as renegoti-
ation, can occur at different stages of the contractual process. Interim renegotiation takes
place before the mechanism is played and involves a change of the mechanism and the equi-
librium the players intend to play. Ex post renegotiation takes place after the mechanism is
played and involves a change of the outcome or recommendation proposed by the mechanism.
The consequences of both interim and ex post renegotiation crucially depend on the details
of the renegotiation process: what alternative outcomes or mechanisms are considered? How
do the players communicate with each other, and how do they select among the alternative
proposals? How is the surplus that is generatéd by renegotiation shared among the players?

4.11.1. Interim Renegotiation

The following two examples are taken from Holmstrom and Myerson (1983).

Suppose that there are two individuals in the economy, and each individual may be one
of two possible types. Individual 1 may be type la or 1b, individual 2 may be type 2a or
2b, and all four possible combinations of types are equally likely. There are three possible
decisions called A, B, and C. The payoff of each individual from each decision depends only
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on his own type (private values), as shown in the following table.

Ula | Ulb | U2a | U2b
d=A] 2 0 2 2
d=B] 1 4 1 1
d=C| 0 9 0 | -8

In this example, individual 2 in either type and individual 1 in type la both prefer A
over B and B over C. However if individual 1 is type 1b then his preference ordering is
reversed and he strongly prefers C. Type 2b differs from 2a in that 2b has a greater aversion
to decision C. (These are von Neumann-Morgenstern utility numbers.) Among all incentive-
compatible decision rules, the following decision rule § uniquely maximizes the sum of the
two individuals’ ex ante expected utilities: L\\' QX/'; } e p{

6(la,2a) = A,  0(la,2b) =B "“?f"’ f*\-
5(1b,2a) = C,  6(1b,2b) = B \’/

Notice that this decision rule selects decision C, type 1b’s most preferred decision, if the
types are 1b and 2a; but if 2's type is 2b (so that 2 is more strongly averse to C') then the
decision rule selects B instead. To check that § is incentive compatible, notice that type 2a
can get decisions A or C with equal probability if he is honest, or he can get B for sure it he
lies and reports his type as 2b. Since both of these prospects give the same expected utility
to 2a, he is willing to report his type honestly when ¢ is implemented.

The decision rule § is incentive efficient (in both the interim and ex ante senses), so no
outsider could suggest any other incentive-compatible decision rule that makes some types ) e ”
better off without making any other types worse off than in d. J el

But if individual 1 knows that his type actually is 1a, then he knows that he and individual Z;’., .
2 both prefer decision A over the decision rule §. Thus, rather than let § be implemented, £ forsbs L'/),
individual 1 in type la would suggest that decision A be implemented instead, and individual -~ Sfdtae
2 would accept this suggestion. te o '

Thus, although § is an incentive-efficient decision rule, it is possible for the individuals to
unanimously approve a change to some other decision rule (namely A-for-sure). Of course, :‘
this unanimity in favor of A over § depends on s type being la, but consider what would
happen if 1 were to insist on using § rather than A. Individual 2 would infer that I's typ
must be 1b. Then decision rule § would no longer be incentive compatible, becauf
types of individual 2 would report “26”, to get decision B rather than C.*° /

26Note that the rule that would end up being implemented is the mechanism

2a¢ 2b
la| A | A
| B | B
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which is durable. e Y
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Thus, if the individuals can redesign their decision rule when they already know their own
types, then the decision rule ¢ could not be implemented in this example, even though it is
incentive compatible and incentive efficient. In the terminology of Holmstrom and Myerson,

§ is incentive efficient but not durable.

Holmstrom and Myerson proceed to provide a definition of durable mechanisms and to

establish their existence.

Informal Definition. An incentive compatible mechanism is durable if ag};‘l”gggative
mechanism that is proposed to the players is blocked with probability one in™non trivial

equilibrium of the voting game in which the players vote simultaneously for either the alter-

native or original mechanism, and the alternative mechanism is implemented if and only if

everyone votes in its favor.

The definition is informal because the definition of “non trivial equilibrium” is unspecified.
Tt refers to an equilibrium that is the limit of a sequence of strictly mixed profiles of strategies.

This rules out E}l trivial eqy
o

-y\:;'rl"“'* \d Sa S

ver deﬁnitioﬁ only requires that for ever

ili‘p’rium where everyone votes against the alternative mechanism.
y alternative mechanisms that is

suggested to the players, there is afﬁgﬁ""crivial equilibrium where this alternative is rejected.

A stronger deﬁnit';?.lz

ygggld have required that ever¥ alternative mechanism is rejected in

. (4 28 Zgp . . .
.every plausible Slimmiem. 'To see that this can make a difference, consider the next example.
h‘% Suppose that there are two individuals with two independent and equally likely types
(la, 1b; 2a, 2b), and there are two possible decisions, A and B. The two individuals get the

same payoffs, as follows:

.ul(A,t) = ’LLQ(A,fJ) == 2, vt

’qu(B, t) = U/Q(B,t) “:

3 ift=(la,2a) or
0 ift=(la,2b) or

t = (1b,2b)
t = (1b,2a) Jecaup

In this example, let §(t) = A for all . Then ¢ is not interim incentive efficient $it is

dominated by the mechanism

(

& 2a 2b
la| B | A
| A| B9

%But % is durable. The two individuals would both gain from changing to B when their
types match; but in any voting game with any alternative mechanism, there is always an equi-
librium rejection in which both individuals always use uninformative voting_and reporting < Cter

strategies. The notion of durability merely assumes that the individuals would play nonco-
operatively in the voting game. Individuals cannot be forced to communicate effectively in

a noncooperative game with incomplete information.

stre de

The q_}lestion of what envi}'oriment
Gt oM o o L Yy
and what environment® do not admit
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1}9’1&5(1 réenegotiatiorrproof mechanisms
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1

. . . .
Sf mechanisms is open. It 1s

not even known if there exists an example where an interim renegotiation-proof mechanism

fails to exist.
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4.11.2. Ex-Post Renegotiation AUMV/ S P76 o€ s )

Neeman and Pavlov (2010) propose the following definition for ex-post renegotiation proof-
ness under complete information. See Neeman and Pavlov (2010) for how this definition can
be extended to cover incomplete information as well. <+ /{/Q )

L\/ll :«le"'\

Definition 1. An equilibrium o of a mechanism (S,m) is ex post renegotiation-proof if ‘L}‘“ nilir v
both of the following conditions hold: Fo
*+Tinh?

(i) An outcome that is obtained under the equilibrium play of the mechanism cannot be
renegotiated in a way that benefits both players. And, —s @(W&yi oCE. /

(ii) No agent can improve upon his equilibrium payoff in any state by a unilateral deviation
from o followed by renegotiation of the resulting outcome to another outcome that

/’ ,‘% ,\7 Loa) 9\-/6/7/ e~ /;ez\fj

The first part of the definition is straightforward. If there is another outcome that
Pareto dominates the outcome that was produced by the mechanism, then the latter will be
renegotiated. The following example illustrates the second part of the definition.

benefits both players.

Example. A buyer and a seller can trade a single good. The buyer values the good at V'
that can be either 0 or 2, the seller values the good at 1. The realization of V and the seller’s
valuation are commonly known between the agents. Consider a mechanism where the buyer
is asked to report his value: after a report “V = 2” the good is transferred from the seller
to the buyer at a price py, and after a report “i/ = (7 there is no trade and the buyer pays
o> Tt is easy to see that the buyer has a dominant strategy to report his true
if py — po € (0,2), and the resulting outcome is ex post efficient. However, as we

show Jelow, this equilibrium is not ex post renegotiation-proof unless ps — po = 1.
Sfippose py —po € (1,2). If the buyer with V' = 2 reports “}/ = (" then the payoffs of the
‘buygr and the seller (without renegotiation) would be —pg and po, respectively. This outcome
is Phreto dominated by a decision to trade at a new price 7 that satisfies p — po € (1,2). ) & J; 733!
Herlce, for any such p < ps, the buyer would prefer to misreport and then renegotiate the ‘
" outtome to trade at the price P rather than report his true valuation. Thus, the original
equflibrium is not ex post renego‘ciation—pxroof.27
ceman and Pavlov proceed to show that under complete information, any budget bal-
anded and ex-post efficient rule can be implemented if the number of agents is larger than or
equial to three, but only Groves mechanisms are ex-post renegotiation proof with two agents.
The fact that budget balanced Groves mechanisms often fail to exist implies that in many
proplems, there is no ex post renegotiation proof mechanism.

27[lhe argument for the case py — po € (0,1) is similar. The buyer with V = 0 will find it profitable to
repgrt “V = 2” and then renegotiate to “no trade” as long as long a new payment p is smaller than po.

%L‘ “'t {'k:j :*,l:\ 4‘\-{‘ '{‘\. ~(‘€-(C¢'(.'|/\ //:J‘" H“.t‘
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Exercises

1. Construct a type space that describes the following information structure. Two firms
compete in a market. The cost of firm B is zero. The cost of firm A is equally likely
to be either zero or one. Firm B sends a spy to check whether firm A has the machine
that enables costless production. If firm A has the machine, then the spy discovers it
with probability % If firm A does not have the machine, then the spy obviously cannot
discover it.

9. Describe an example of a mechanism that is ex-post incentive eflicient but not interim
incentive efficient. Describe an example of a mechanism that is interim incentive effi-
cient but not ex-ante incentive efficient. Describe an example of a mechanism that is
ex-ante incentive efficient.

——3 3. Show that in a public good problem with 2 agents whd’have two typesigach no Groves

mechanism is budget balanced.

4. Find a budget balanced AAGV mechanism for a public good yobl‘%r} \KCIIEE 2 agents
whose valuations are uniformly distributed on the unit interval. Show that the mech-
anism you found is not dominant strategy incentive compatible.

5. A government agency writes a procurement contract with a firm to deliver ¢ units of
a good. The firm has constant marginal cost ¢, so that its profit is P — cg, where P
denotes the payment for the transaction. The firm’s cost is either high (cxr) or low (cr,
with 0 < ¢y < ci). The agency makes a take-it-or-leave-it offer to the firm (whose
default profit is zero). The benefit to the agency of obtaining ¢ units is given by a
concave function B (q) .

1. What is the optimal contract for the agency if it knows the firm’s cost?

9. What is the optimal contract for the agency if the firm’s cost is private infor-
mation, and the agency’s prior belief about the firm’s cost is Pr(c=cg) = B7
Formulate the agency’s problem, but do not solve it.

3. Solve the agency’s problem for the case where B (q) = 4o — 2% cp=2,¢, =1,
and § = 1.

6. Example 23.F.3, p. 906 from MWG (who took it from Myerson, 1991) and the exercises
therein.




7. Redo the 2 x 2 version of the Myerson and Satterthwaite model under the assumption
that ¢ represents the value of the object to the seller and that the object is jointly owned
by the buyer and seller (Hint: in this case, if there is disagreement, then the buyer

and seller each win the object with probability %; observe that this formulation affects
the buyer’s and seller’s IR constraints but not their IC constraints). Show that in this
case there always exist an incentive compatible and individually rational mechanism.
See Cramton, Gibbons, and Klemperer (Econometrica, 1987) for a general treatment
of this case.

8. An object is worth v to a buyer and costs either ¢ or ¢ to produce, wherev >¢ > ¢ > 0.
The cost of production is the private information of the seller. The buyer believes that
the cost is high/low with probability p, 1 —p, respectively. What is the optimal buying
mechanism for the buyer? Is this mechanism ex-post officient? Suppose now that the
buyer obtains a signal s about the cost of production that is correct with probability
g > .5 (that is, Pr(s =¢lc=¢) =Pr(s =¢lc= ¢) = q). Identify the mechanism that
maximizes the expected payoff for the buyer. Hint: in this mechanism the object is

. traded with probability 1 gt an expected prige that iy equal to its cost of production.
Mﬁo‘ﬂﬁ'h.JM J'iduy 4 . [" ;L.Q“AM Z‘h 2\ K/}M
9. Consider a private values auction environment with 2 bidders. Suppose that the com-

mon prior is given by the following matrix:
=1

<
[N}

col=iosi=t |}

v=1
v =2
Show that the seller can design a dominant strategy auction that extracts the full
surplus of the bidders. Hint: consider a Vickrey or a sealed bid second price auction.
Show that there exists a participation fee (that depends on the other bidder’s bid in
the auction) that, for each type of each of the bidders, is equal to the expected surplus
of this type from participating in the auction. See Crémer and McLean (ECM, 1985,
1988) for the original construction of such full surplus extraction auctions. See Neeman
(JET, 2004) and Heifetz and Neeman (ECM, 2006) about the generality of this method
of extracting the full surplus of the bidders.

Oy [—=jeo i

10. Consider a first-price auction with independent and private values. Show that in
equilibrium the bidders’ bid function are nondecreasing. Zo M an

11. Consider a first-price auction with independent private values. Supposg¢/that bidder 4’s %[Z// /
)

valuation is distributed according to a distribution Fj with support [a,b] where a > 0.
Show that if b; (v;) is bidder #’s equilibrium bid function, then lin%) b; (v;) = a.[Be explicit

Vi

about what you need to assume in order to prove your answer. || o -~ ,

12. A seller of an object faces a single buyer. The seller believes that the buyer’s willingness
to pay for the object is uniformly distributed over the interval [0, 1]. The value of the

53




13.

14.

object for the seller is 0. What auction maximizes the expected revenue to the seller?
Prove your result.

Suppose there are two bidders and that each bidder observes an independent signal
21,35 ~ U [0,1] about the value of the object. The value to both bidders is given by
V1 = Vg = L1 + Ta.

1. Find an asymmetric (linear) Bayesian-Nash equilibrium of the second-price auc-
tion. Characterize the set of asymmetric linear Bayesian-Nash equilibria.

2. Find a symmetric Bayesian-Nash equilibrium for the first-price auction. Can you
characterize the set of asymmetric linear Bayesian-Nash equilibria in this case?

Give an example of n identically distributed random variables that satisfy the MLRP
but are not conditionally i.i.d. Give an example of n identically distributed random
variables that are conditionally i.i.d. but fail the MLRP.
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ROBUST MECHANISM DESIG jLd e b S

By DIRK BERGEMANN AND STEPHEN MORRIS! 1") p spen) H Jd olocr fle

The mechanism design literature assumes too much common knowledge d{ the en- S ~e. J e 4 L eV
vironment among the players and planner. We relax this assumption by studying\pech- )T
anism design on richet type spaces. /[q ) 2 K/ Ve /V/

We ask when ex post implementation is equivalent to interim (or Bayesian) impi¢- 7 ?
mentation for all possible type spaces. The equivalence holds in the case of separab
environments; examples of separable environments arise (1) when the planner is im- @ .
plementing a social choice function (not correspondence) and (2) in a quasilinear en- j Ve ""‘“7
vironment with no restrictions on transfers. The equivalence fails in general, including exa é i
in some quasilinear environments with budget balance. 7 if

In private value environments, ex post implementation is equivalent to dominant
strategies implementation. The private value versions of our results offer new insights @ 6 oM hed fo//o win) |
into the relationship between dominant strategy implementation and Bayesian imple- /
mentation. refull”;

KEYWORDS: Mechanism design, common knowledge, universal type space, interim
equilibrium, ex post equilibrium, dominant strategies.
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W' sow
Game theory has a great advantage in explicitly analyzing the consequences of irading
rules that presumably are really common knowledge; it is deficient to the extent it assumes . 1‘»
other features to be common knowledge, such as one player’s probability assessment about C r'. t (e
another’s preferences or information,
I foresee the progress of game theory as depending on successive reductions in the base
of common knowledge required to conduct useful analyses of practical problems. Only /
by repeated weakening of common knowledge assumptions will the theory approximate (% poy/ 7.
reality. Wilson (1987). X VA VAS

%

1. INTRODUCTION P »\7(@1.,7@7{. _

THE THEORY OF MECHANISM DESIGN helps us understand institutions ranging
from simple trading rules to political constitutions. We can understand insti-
tutions as the solution to a well-defined planner’s problem of achieving some
objective or maximizing some utility function subject to incentive constraints.
A common criticism of mechanism design theory is that the optimal mecha-
nisms solving the well-defined planner’s problem seem unreasonably compli-
cated. Researchers have often therefore restricted attention to mechanisms
that are “more robust” or less sensitive to the assumed structure of the en-
vironment.2 However, if the optimal solution to the planner’s problem is too
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ROBUST MECHANISM DESIGN 1773

ceptable outcomes. The planner ( partially) implementsS the social choice cor-
respondence if there exists a mechanism and an equilibrium strategy profile
of that mechanism such that equilibrium outcomes for every payoff type pro-
file are acceptable according to the SCC.” This is sometimes referred to as
Bayesian implementation, but since we do not have a common prior, we will
call it interim implementation.

While holding this environment fixed, we can construct many type spaces,
where an agent’s type specifies both his payoff type and his belief about other
agents’ types. Crucially, there may be many types of an agent with the same
payoff type. The larger the type space, the harder it will be to implement the
social choice correspondence, and so the more “robust” the resulting mech-
anism will be. The smallest type space we can work with is the “payoff type
space,” where we set the possible types of each agent equal to the set of payoff
types and assume a common knowledge prior over this type space. This is the
usual exercise performed in the mechanism design literature. The largest type
space we can work with is the union of all possible type spaces that could have
arisen from the payoff environment. This is equivalent to working with a “uni-
versal type space,” in the sense of Mertens and Zamir (1985). There are many
type spaces in between the payoff type space and the universal type space that
are also interesting to study. For example, we can look at all payoff type spaces
(so that the agents have common knowledge of a prior over payoff types but
the mechanism designer does not) and we can look at type spaces where the
common prior assumption holds.

In the face of a planner who does not know about agents’ beliefs about other
players’ types, a recent literature has looked at mechanisms that implement the
SCC in ex post equilibrium (see references in footnote 10). This requires that in
a payoff type direct mechanism, where each agent is asked to report his payoff
type, each agent has an incentive to tell the truth if he expects others to tell the
truth, whatever their types turn out to be. In the special case of private values,
ex post implementation is equivalent to dominant strategies implementation.
If an SCC is ex post implementable, then it is clearly interim implementable
on every type space, since the payoff type direct mechanism can be used to
implement the SCC.

The converse is not always true. In Examples 1 and 2, ex post implementation
is impossible. Nonetheless, interim implementation is possible on every type
space. The gap arises because the planner may have the equilibrium outcome
depend on the agents’ higher order belief types, as well as their realized pay-

§«partial implementation” is sometimes called “truthful implementation” or incentive com-
patible implementation. Since we look exclusively at partial implementation in this paper, we will
write “implement” instead of “partially implement.”

7In companion papers (Bergemann and Morris (20053, 2005b)), we use the framework of this
paper to look at full implementation, i.e., requiring that every equilibrium delivers an outcome
consistent with the social choice correspondence.
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counterparts in private values environments. In particular, we (1) identify con-
ditions when Bayesian implementation on all type spaces is equivalent to domi-
nant strategies implementation, (2) give examples where the equivalence does
not hold, and (3) show how and when the equivalence may depend on type
spaces richer than the payoff type space. While related questions have long
been discussed in the implementation literature (e.g., Ledyard (1978) and
Dasgupta, Hammond, and Maskin (1979))—we discuss the relationship in de-
tail in the concluding Section 6—our questions have not been addressed even
under private values.

The paper is organized as follows. Section 2 provides the setup, introduces
the type spaces, and provides the equilibrium notions. In Section 3 we present
in some detail three examples that illustrate the role of type spaces in the im-
plementation problem and point to the complex relationship between ex post
implementation on the payoff type space and interim implementation on larger
type spaces. In Section 4 we present equivalence results for separable social
choice environments. The separable environment includes as special cases all
social choice functions and the quasilinear environment without a balanced
budget requirement. Section 5 investigates the quasilinear environment with a
balanced budget requirement. We conclude with a discussion of further issues
in Section 6.

2. SETUP
2.1. Payoff Environment

We consider a finite set of agents 1,2, ..., I. Agent i’s payoff type is 0, € 6,
where @, is a finite set. We write § € @ = @, x --- x @;. There is a set of
outcomes Y. Each agent has utility function u;: Y x ® — R. A social corre-
spondence is a mapping F: ® — 2\ §. If the true payoff type profile is 6, the
planner would like the outcome to be an element of F(9).

An important special case—studied in some of our examples and results—is
a quasilinear environment where the set of outcomes Y has the product struc-
ture Y =Y, x Yy x - x Yy, where V1 =Y, =-..=Y; =R, and a utility func-
tion

Uiy, 0) = 1Yoy Vi, -+ Vi 0) 2 (00, 0) + i,

which is linear in y; for every agent i. The planner is concerned only about
~ choosing an “allocation” y; € Yy and does not caré abdiit tiansters. Thus there
is a function fy: @ — Y; and ;

F(0)= {(YO, Visees YD EY 1N =f0(9>}-

“Throughout the paper, this environment.is.fixed.and informally,ynderstood
to be common knowledge. We allow for interdependent types: one agent’s pay-
off from a given outcome depends on other agents’ payoff types. The payoff
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mechanism design. The foundations of this formalism are discussed in some
detail in Section 2.5.

2.3. Solution Concepts

Fix a payoff environment and a type space 7. A mechanism specifies a
message set for each agent and a mapping from message profiles to out-
comes. Social choice correspondence F is interim implementable if there exists
a mechanism and an interim (or Bayesian) equilibrium of that mechanism such
that outcomes are consistent with F. However, by the revelation principle, we
can restrict attention to truth-telling equilibria of direct mechanisms.? A direct
mechanism is a function f: 7 — Y.

DEFINITION 1: A direct mechanism f: T — Y is interim incentive compatible
on type space T if

/ wi(f (8, £, 8(t;, ) d7w(t)
t_jeT_;
= [ wlf ), ) dme)
t_eT_;
for ail i,teTandt T,

The notioii of interim incentive compatibility is often referred to as Bayesian

incentive compatibility. We use the former terminology as there need notbea "

common prior on the type space.
DEFINITION 2: A direct mechanism f:T — Y on T achieves F if
f(6) e F(8()
forallteT.

It should be emphasized that a direct mechanism f can prescribe varying
allocations for a given payoff profile 0 as different types, ¢ and ¢/, may have an
identical payoff profile 6 = 6(¢) = 6(¢').

DEFINITION 3: A social choice correspondence F is interim implementable
on T if there exists f:T — Y such that f is interim incentive compatible
on T and f achieves F.

9See Myerson (1991, Chapter 6).

e,
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2.4. Questions

Our main question is, When is F interim implementable on all type spaces?
By requiring that F be interim implementable on all type spaces, we are asking
for a mechanism that can implement F with no common knowledge assump-
tions beyond those in the specification of the payoff environment. In Sections
4 and 5, W& provide sulficient conditions for ex post Imj lementability to be

S equiva!efnt to interim implementability (Mwﬁxt—mae_swl_a—naf
in tHe Tiext sectiof Show i SibIE to find social choice correspondences
that are interim implementable on any type space but are not ex post imple-
mentable.

We also consider the implications of interim implementability on different
type spaces. To describe these results, we must introduce some important prop-
erties of type spaces. A type space 7_is a payoff type space if each T; = @, and
each 8, is the identity map. Type space 7 18 jinite if each 7; 1s finite. Finite type
space 7 has full support if ;(t;)[t-;] > 0 for all i and ¢. Finite type space 7

satisfies the common prior assumption (with prior p) if there exists p € A(T)
such that

> pltity)>0 foralliandt

t;eT_;
and

p(tiy t——i)
Zt’*ieTﬁ,‘ p(i, 1)

()] =

The standard approach in the mechanism design literature is to restrict at-

tentIoNTo & common prior payoff type space (perhaps with TGl SUPpOrt). Thus
~TITI5Umed that there is common knowledge among the agents of a common

prior over the payoff types. A payoff type space can be thought of as the small-
est type space embedding the payoff environment described above. Restricting
attention to a full support, common prior, payoff type space is with loss of gen-
erality. We can relax the implicit common knowledge assumptions embodied
in those restrictions by asking the following progressively tougher questions
about interim implementability:
o Is F interim implementable on all full support common prior payoff type

spaces?
e Is F interim implementable on all common prior payoff type spaces?
o Is F interim implementable on all common prior type spaces?
e Is F interim implementable on all type spaces?

We will see that relaxing common knowledge assumptions makes a differ-
ence. In particular, we will show that while the common prior assumption is
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of beliefs (£, ¢!, ,...). We want to require that high level types, which in-
tuitively contain more information than lower level types, are consistent with
Jower levels. Formally, an infinite hierarchy is coherent if all higher level types
have the same payoff-relevant type as lower level types and if the projection of
their belicfs over other players’ types onto lower level type spaces is consistent
with lower level types’ beliefs. We can let player i’s possible types, T, be the set
of all coherent infinite hierarchies of beliefs. T he universal type space litera-
ture! shows that—under some topological assumptions—the set of types, i.e.,
infinite hierarchies, can be identified with pairs of payoff-relevant types and
beliefs, so that, for each i, there exists a homeomorphism f;: T; — 0, x A(T-)).
Since each @; is finite, such a construction is possible in our case. Now letting
9, be the projection of f; onto 6; and letting 7; be the projection of f; onto
A(T-,), this canonical “known own payoff type” universal type space is an ex-
ample of a type space T = (T}, 0;, 7)1y, S described is Section 2.2, with the
special property that for each 6; € @; and m; € A(T-), there exists t; € T; such
that Gi(t,-) = 0; and ’ﬁi(ti) = 7Ti.15

What is the connection between the explicit universal type space and the
implicit type spaces we described above? An implicit type space has no “re-
dundant types” if every pair of types differs at some level in their higher order
belief types. Mertens and Zamir (1985, Property 5 and Proposition 2.16) show
that any implicit type space that has no “redundant” types and satisfies some
topological restrictions is a belief-closed subset of the universal type space (and
the same result will be true in our setting). Thus modulo the redundancy and
topological provisos, the union of all type spaces is the same as the universal
type space.

How significant are the redundancy and topological restrictions required
by Mertens and Zamir to show the equivalence of explicit and implicit
type spaces? Heifetz and Samet (1999) show that—without topological restric-
tions—it is possible to find types that cannot be embedded in the universal type
space.'¢ In general, the no redundant types restriction is not innocuous either.
To illustrate this point, consider the type space

Tl = {tla ti}s
TZ = {tZ’ t;,}’

UMertens and Zamir (1985), Brandenburger and Dekel (1993), Heifetz (1993), Mertens,
Sorin, and Zamir (1994).

15This “known own payoff type” universal type space has built in the feature that there is
common knowledge that each agent i knows his payoff type 6;. If instead we had allowed agents
also to be uncertain about their own 6;, we would be back to the standard universal type space
concerning 6, as constructed by Mertens and Zamir (1985).

16gifetz and Samet (1998) provide a nonconstructive proof of the existence of a universal
type space without topological restictions.
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Inequalities (10) and (11) have a very simply structure. With very few excep-
tions, the payoffs that appear on the left- and right-hand sides of the inequali-
ties are identical and only the transfers differ. These inequalities are generated
either by true or misreported types, which induce only different transfer deci-
sions but identical allocational decisions. The exceptions are the second and
fifth inequality of agent 1, where a misreported type also leads to a different
allocational decision. Rearranging the inequalities, we obtain

0>yu—yi, 0=y~
—1>yn—yn, 0=yn—Yyu
0>yi— Yy, 0Zyn—rn
0> ysa— Yaar 0= Yaa — Va3
—1> yes — 55, 0= Yss — Y4
0> yi6— Yos» 0= Yos — Yos-

When we sum these twelve constraints, the transfers on the right-hand side of
the inequalities cancel out and we are left with the desired contradiction for
any arbitrary choice of probabilities, namely —2 = 0. The transfers cancelled
out because the set of incentive constraints for agent 1 and agent 2 jointly
formed a cycle through the type space.
s

o m————————
4. SEPARABLE ENVIRONMENTS

We now present general results about the relationship between ex post im-
plementability and interim implementability on different type spaces. The first
result is an immediate implication from the definition of ex post equilibrium.

PROPOSITION 1: If F is ex post implementable, then F is interim implementable
on any type space.

PROOF: If F is ex post implementable, then by hypothesis there exists
f*:0 — Y with f*(0) € F(0) for all 9, such that for all i, all 6, and all @],

wi(f*(0), 0) = wi(f*(6;, 0-1), 0).

Consider then an arbitrary type space T and the direct mechanism f: 7 — Y
with f(#) = f*(8(£). Incentive compatibility now requires
12 T + rve

o~

ui(f(t;’ t—i)’ (ei(ti)’

tgeT_;

0_i(t_))) d(t)

f; € argmax
t?ET,'

= argmax
t;-ETi

f ui(f*(/éi(tt{L 0_i(t-0)), (b\i(ti); B_i(t-))) dTt).
t_jeT_;

roe |
pott el

Cﬂjjoél‘ﬁ‘é’j tase l‘./

/QJ ‘/ ‘/"V‘? /
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There are two subsets of separable environments in which we are particu-
larly interested.”® First, there ‘s the case of the single-valued private compo-
nent where Y; = {7, is a single allocation for all i. In this case, there exists a
representation of the utility function %;: Yo x @ — R such that % depends only
on the common component y, and the payoff type profile 6. Thus any social
choice function is separable. Second, there is the case of the classic quasilinear
environment (described in Section 2). In this case, we set, for each agent I,

Y =R,

ai(y()’ Yis 0) = vi(yO’ 0) + ¥
Fi(0) =Y. ‘

In the quasilinear environment, the common component fo(0) will often rep-
resent the problem of implementing an efficient allocation, so that

I
fo(0) = argmaxz v (o, 9)-

ne¥o oy

Whereas the designer is only interested in maximizing the social surplus and
the utilities are quasilinear, there are no further restriction on the private com-
ponents, here the monetary transfers, offered to the agents. In contrast, in the
next section, we shall investigate the quasilinear environment with a balanced
budget requirement as a canonical example of a nonseparable environment.
By requiring a balanced budget, the SCC contains an element of interdepen-
dence in the choice of the private components as the transfers have to add up
to zero.

PROPOSITION 2: In separable environments, if F is interim implementable on
every common prior payoff type space T, then F is ex post implementable.

PROOF: Suppose that F can be interim implemented on all type spaces.
Then, in particular, it must be possible to interim implement F on the type
space where agents other than i have type profile 6_;. Thus for each i and
0_, € O_;, there must exist g%-i:@; — Y such that i has an incentive to truth-
fully report his type,

(12) ui(g"*(0:), (0 6_)) = Ti(g"*(0)), (s, 0-))
for all 8;, ¢, € @, and such that F is implemented, s0 that

14

(13)  g"*-(6) € F(0).

20We would like to thank an anonymous referee for suggesting that we incorporate these two
special cases in the unified language of a separable environment.




Example: A Private Value Auction with 2 Bidders
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V=2
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» It is possible to extract full surplus/with a Vickrey
auction that is preceded by a lottery (A1, A2) that

satisfies <% g) (t) @

» This can be done generically in any model with a
given finite number of types as long as the number
of any player’s types is smaller or equal than the
number of all other players’ types.




However,

» As shown by Neeman (2004), a necessary condition
for full-surplus extraction is that once each buyer’s
belief is identified, this belief pins down the buyer's
valuation (almost surely) (Neeman called this
property “beliefs determine preferences” or BDP)

type — (preferences, beliefs)

» BDP is satisfied in the previous example, but if we

change it to, e
[
v=1ly=1v=2
IERVe SNV
v=1]\g _‘,;%g\/&f;)
v=217 | )1 3

"'
then full surplus cannot be extracted.

» The example shows a failure of robustness against

“higher-order-beliefs” (Bergemann and Morris,
2004)
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ROBUSTLY COLLUSION-PROOF IMPLEMENTATION

BY YEON-KOO CHE AND JINWOO KIM !

A contract with multiple agents may be susceptible to collusion. We show that agents’
collusion imposes no cost in a large class of circumstances with risk neutral agents, in-
cluding both uncorrelated and correlated types. In those circumstances, any payoff the
principal can attain in the absence of collusion, including the second-best level, can
be attained in the presence of collusion in a way robust to many aspects of collusion
behavior, The collusion-proof implementation generalizes to a setting in which only a
subset of agents may collude, provided that noneollusive agents’ incentives can be pro-
tected via an ex post incentive compatible and ex post individually rational mechanism.
Our collusion-proof implementation also sheds light on the extent to which hierarchical
delegation of contracts can optimally respond to collusion.

KBYWORDS: Robustly collusion-proof implementation, pairwise identifiability, sub-
group collusion, hierarchical delegation.

1. INTRODUCTION

THERE HAS BEEN A GROWING INTEREST in studying collusion among asym-
metrically informed agents, in various settings ranging from internal organiza-
tion, regulation, and auctions, to oligopolistic competition.? Although most of
these studies explore how agents can effectively collude against exogenously
given institutions, a few recent studies have begun to investigate an optimal
organizational/contractual response to agents’ collusion. In particular, Laffont
and Martimort (1997, 2000) have developed a modeling framework that inte-
grates collusion as part of the general mechanism design analysis.> An impor-
tant insight gained from this framework is that agents’ asymmetric information
imposes transaction costs on their abilities to carry out collusive arrangements.

!The authors ate grateful for comments and suggestions from a co-editor and three referees, and
from Gorkem Celik, Jacques Crémer, Ian Gale, Lucia Quesada, Larry Samuelson, Bill Sandholm,
Sergei Severinov, Guofu Tan, and seminar participants at USC, UCSD, Korea University, and
Yonsei University. The authors acknowledge warm hospitality they received from Yonsei Univer-
sity and the University of Wisconsin, respectively, during their visits. The authors have benefited
from financial support from the Shoemaker Fellowship and from Yonsei University.

MTirole (1986), Baliga and Sj6strom (1998), Celik (2004), Faure-Grimaud, Laffont, and
Mattimort (2003), Severinov (2003), and Mookherjee and Tsumagari (2004) study collusion in
internal organization and the value of delegation. Graham and Marshall (1987), McAfee and
McMillan (1992), Mailath and Zemsky (1991), Marshall and Marx (2004), Brusco and Lopomo
(2002), Caillaud and Jehiel (1998), and Es6 and Schummer (2004) study collusion in one-shot
auctions of various formats, while Aoyagi (2003), Blume and Heidhues (2002), Skrzypacz and
Hopenhayn (2004), and Abdulkadiroglu and Chung (2003) study collusion in repeated auctions.
3Earlier literature concerned about coalition formation in Groves’ mechanisms includes Green
and Laffont (1979) and Crémer (1996). The former paper envisions a coalition of symmetrically
informed agents, whereas the latter allows for their possible asymmetric information. Although
the latter framework resembles that of Laffont and Martimort, and even considers subgroup col-
lusion, it restricts attention to dominant strategy implementation (at both grand and coalitional
mechanism design) and does not consider participation constraints.
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that gives the principal an ex post constant payoff equal to the original ex-
pected payoff. This mechanism forces the (grand) coalition to become a resid-
ual claimant of the entire surplus, after paying off the principal an ex post
constant surplus, when it manipulates the outcome. That such a mechanism is
implementable in the adverse selection setting is not obvious and will be an
important part of our analysis. Also not obvious is that such a mechanism, if
implementable, is immune to collusion. In fact, being the residual claimant, the
coalition would prefer the first-best allocation over the intended allocation in
case the latter involves distortion, so it will try to manipulate so that the former
allocation arises. Yet, such a manipulation never succeeds. The reason is that
the coalition faces an asymmetric information problem just like the principal
in the original noncollusive mechanism design. This informational asymme-
try means that an appropriate amount of information rent must be given to
the members of the coalition to implement a particular allocation. However,
since the principal is paid off to realize a desired level of surplus irrespective
of the induced allocation, implementing any other allocation by the coalition
would violate budget balancing.* (This intuition will become more transparent
in Section 5, with the aid of a figure.) In short, by making the agents resid-
val claimants, our mechanism forces them to internalize precisely the same
amount of informational cost that the principal faces in noncollusive mecha-
nism design, and in this sense exploits the coalitional transaction cost fully.

This idea of collusion-proof implementation does not rely on the agents’
types being uncorrelated, although making the agents residual claimants while
preserving their incentives proves more challenging in a correlated type envi-
ronment. If there are only two agents, our method of collusion-proofing indeed
does not work, much consistent with LM’s (2000) finding in their two agents
model. With more than two agents, however, given a reasonable type structure,
our collusion-proof implementation works quite generally, implying again that
the principal can attain any noncollusive payoff in a robustly collusion-proof
fashion even.with correlation. An important corollary of this result is that the
principal can typically implement the first-best allocation and extract the entire
rents from the agents even in the presence of collusive agents.

We then extend our analysis to consider a mechanism that would prevent
collusion by a subgroup of agents. Although the issue of preventing collusion
by a subgroup has rarely been analyzed before, it is practically relevant be-
cause in many settings, only a subgroup of agents is often in a position to col-
lude. Collusion-proofing in this environment poses a new challenge because
the coalition may prey on noncollusive agents as much as on the principal.

~Protecting the interests of noncollusive agents thus becomes an important con-
sideration for the principal. Our collusion-proof implementation idea general-

izgs in a remarkable way to this problem: If at least two collusive agents are

4“The intuition is the same as the one showing that implementing the first-best allocation would
run a budget deficit in Myerson—Satterthwaite (1983) bargaining. The difference is that this prob-
lem is endogenously/deliberately created by our design to prevent collusion from being feasible.
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Suppose now the agents can collude. It is easily seen that the second-price C.-/ / AP
auction is susceptible to collusion. Prior to bidding, the firms can organize a
knockout auction wherein the agents bid for the right to participate in the
second-price auction uncontested; i.e., the loser bids 1 and the winner bids
his cost.’ Hence, with collusion, the buyer essentially pays the price of 1 to the !
winner of the knockout auction. @ Es @ u\‘{c u&aw‘é\ w

Now consider a different mechanism. The buyer holds an auction in which Ussion /
the agents bid for a payment b; and again the low bidder wins. The mechanism <
differs in the payment arrangement: The buyer pays a fixed amount, 2/3, to
the losing (high) bidder, say j, who then pays the winning bidder its bid b;
to perform the job. Intuitively, the losing bidder is a “prime contractor” who
“outsources” the job to the winning bidder and in the process finances the
difference, b; — 2/3.

Absent collusion, the bidding game has a unique equilibrium in which the
agents adopt a symmetric increasing bidding strategy 4 160 for each type
0 € [0, 1]. Consequently, the job is allocated efficiently as in the optimal mecha-
nism and the buyer procures the good at the fixed price of 2/3. Since the alloca-
tion is the same and the buyer pays the same on average as in the (noncollusive)
second-price auction, the revenue equivalence theorem implies that the in-
terim payoffs of both firms are the same as in that game. Hence, it is equilib-
rium for both agents to participate in the auction game. In sum, the proposed
mechanism implements the optimal procurement policy, in the absence of col-
lusion. More importantly, the new mechanism is not susceptible to collusion.
In the bidding game, the agents become residual claimants of the social surplus
after paying a fixed amount of 2/3 to the buyer. Since the allocation is efficient, @
they have no incentive to collude in that bidding game. >

This example illustrates the main idea of preventing collusion, namely that
of “selling the firm” to the agents. In what follows, this idea will be used to [)@ "5 cr,?[,' s
construct a general collusion-proof mechanism that works in a more com- ) S
plicated environment. The example also illustrates another feature of our B¢ b)) o . // /
collusion-proof mechanism, distinguished from the existing literature (e.g., LM “]M) TGN
(1997, 2000)). Unlike the traditional approach, our mechanism guarantees the DI F /"M";/,,(
buyer a desired level of ex post surplus, whether collusion actually occurs or —~ + éaus b ",
not. Hence, in the example, the buyer could achieve the same outcome by del- /‘) LTV °® L
egating the procurement job to a “consortium” of agents (run by some unin- L] " e

formed third party) at a fixed price of 2/3; the consortium will then organize /«.-/;;. uh e

its own auction to allocate the job efficiently. Such delegation may provide a / v -'/

more practically relevant implementation of our mechanism. A have o A /
T4 ) £

SMore precisely, they can organize a knockout auction in which the agents bid to pay their rivals
for “uncontested bidding” in the official auction. This knockout auction game has a unique sym-
metric equilibrium in which an agent with cost 6 bids } — 16. This equilibrium implements the
direct revelation (strong) cartel mechanism studied by McAfee and McMillan (1992). A similar
problem arises with the first-price auction.
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Che and Kim (2006) show that this mechanism renders collusion ineffective and
achieves the Myerson revenue if collusion takes place after the agents have agreed to
participate in the mechanism. Indeed, under such a scenario collusion occurs “too late”;
by agreeing to participate the agents have already committed to pay the fixed fees that
provide the principal with the Myerson revenue regardless of the agents’ subsequent
actions. But the only way for the cartel to fulfill this commitment, while still inducing
the agents’ participation in the collusive scheme and without breaking the budget, is to
implement the Myerson allocation.

However, this mechanism fails to be collusion-proof if collusion takes.place before
the agents have agreed to participate in the mechanism. If the agents share the infor-
mation about their valuations beforehand, then they can refuse to participate in the
mechanism if both valuations are smaller than the total fixed fee IT*. The principal’s ex-
pected revenue then falls below the Myerson level, because she receives the total fixed
fee IT* only in case of a sale.

In the third mechanism the agents simultaneously decide whether to bid for the
good or to stay out. If agent i stays out, then he does not get the good and his payment
is zero. If agent i bids and the other agent stays out, then agent i gets the good and pays
the price § 3 to the principal regardless of his bid. If both agents submit bids, then the
highest bldder gets the good and pays his bid to his opponent, while the loser pays g S to
the principal. There i 1s a symmetric equilibrium where each agent i bids 10 + 35 13 1f his
valuation 6; exceeds 1 5, and stays out otherw1se This equilibrium results in the Myerson
allocation, and the principal receives 2 2 if she makes the sale, and 0 otherwise.

In this paper we show that the thlrd mechanism renders collusion ineffective and
achieves the Myerson revenue even when collusion takes place before the agents have
agreed to participate in the mechanism. The Myerson allocation turns out to be cartel
interim efficient when the cartel is facing such a mechanism: any alternative feasible al-
location necessarily makes some types of some agents worse off and thus is vetoed. For
example, consider a collusive mechanism that maximizes the sum of the agents’ ex ante
expected payoffs: the agents buy the good from the seller at the price g 2 and allocate the
good to the agent with the highest valuation if and only if the highest valuatlon exceeds
the price g 2. One can prove that such a collusive mechanism provides agents who have
sufﬁmently high valuations with expected payoffs lower than those they expect to get
through noncooperative play in the principal’s mechanism and thus is vetoed.

3. MopEL

There is one principal who owns a good, and n > 2 agents. Each agent i has a valuation
- 0; for the good, which is known only to him. Valuations are identically and indepen-
dently distributed according to a continuous cumulative distribution function F with
support [8, 0], where 0 < 0 < 0 < o0, and an everywhere positive differentiable den-
sity f. This distribution is common knowledge. We require the distribution to satisfy a
standard condition on the hazard rates.




Example in Che and Kim (2006)
b' -0, if b < bj
— —b; if by > by
Suppose both bldders use the same strictly increasing bidding strategy b: [0,1] — R..

u; (bi, 053 0i) =

Bidder 1 of type 6; problem:

maxE[(b —0;) - 1[b; < b(0;)] + (3 1)) 116 > b(6;)]]

B (b~ 01 [ 1) <]+ (F-009) 1 (bi) > 03]
b1 (bg)

== o) -0+ [ (-b6)) as,
0
FOC (evaluated at equilibrium 0; = b~ (b;)):

~9"—a%§-"-’l (5= b7 (B)) + (1 =07 () + (3= (4 ) P = 0
( —1(5))_(26_2_1,— (b)>8b b 1(b;) -
Try linear solution: b~ (b;) = kb; + ¢

b(6
b

~~

=> (1— kb —¢) = (2b;— % — kb — ) k
:{ —k=@-kk [ k=3

(1-¢= (———c)lc c=-3
=>b(0) = 19"‘2



