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Abstract

We study how the suspicion that communicated information might be deceptive affects the nature of 
what can be communicated in a sender-receiver game. Sender is said to deceive Receiver if she sends a 
message that induces a belief that is different from the belief that should have been induced in the realized 
state. Deception is costly to Sender and the cost is endogenous: it is increasing in the distance between the 
induced belief and the belief that should have been induced. A message function that induces Sender to 
engage in deception is not credible and cannot be part of an equilibrium. We study credible communication 
with state-dependent and state-independent Sender’s preferences. The cost of deception parametrizes the 
sender’s ability to commit to her strategy. Through varying this cost, our model spans the range from cheap 
talk, or no commitment (Crawford and Sobel, 1982) to full commitment (Kamenica and Gentzkow, 2011).
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1. Introduction

Communication is indispensable for almost every economic and social interaction. Often-
times, an agent with superior information conveys this information strategically to others in 
order to influence their behavior. If the interests of the parties are not perfectly aligned, then 
the informed agent may benefit from being dishonest. Yet, research shows that in many cases, in 
addition to possibly producing material gains, dishonesty is also costly.1 How does the cost of 
dishonesty affect the nature of what can be communicated between the parties? The answer to 
this important question depends, obviously, on the source and form of this cost.

What makes an untruth costly to communicate? If Alice and Bob both stand outdoors at 
midday, and Alice tells Bob that it is midnight, this is a lie. If, when exiting the dentist’s office, 
Alice announces that she just had the best time of her life, this is also a lie. However, if Bob is a 
“reasonable person,”2 these lies do not change his perception of reality. Many would argue that 
lies that are not believed are costless.

In this paper we take the position that dishonesty is costly only to the extent that it undermines 
beliefs. Indeed, a common distinction between lying and deception is that a lie is “a statement 
that the speaker believes is false” whereas deception is a “statement – or action – that induces 
the audience to have incorrect beliefs” (Sobel, 2020).3 Accordingly, we assume that deception 
(rather than mere lying) is costly, and study how the suspicion that communicated information 
might be deceptive affects the nature of what can be communicated in equilibrium.

We study a standard model of communication between an informed Sender (she) and an un-
informed Receiver (he) to which we add a cost of deception. Sender observes a certain variable 
and sends a message about it to Receiver who, upon receiving the message, updates his belief 
and takes an action. Receiver’s beliefs on the relevant variable depend on the prior distribution, 
Sender’s equilibrium strategy, and the actual message sent. Sender is said to deceive Receiver if 
she sends a message that is different from what she was supposed to send according to her equi-
librium strategy, in a way that distorts Receiver’s beliefs relative to his equilibrium expectations. 
We assume that the cost of deception to Sender is increasing in the “distance” between the belief 
induced by the message actually sent, and the belief that should have been induced under the 
message that was supposed to be sent in equilibrium.

The novelty in our approach is two-fold. First, we introduce a (belief-dependent) cost of de-
ception into communication games. This allows us to investigate the effect that costly deception 
has on the information that is communicated in equilibrium. The form of deception cost em-
ployed reflects the emphasis we place on the fact that untruths are costly only to the extent that 
they affect Receiver’s beliefs. Second, because the cost of deception in our model is measured 
relative to Receiver’s equilibrium expectations, it is endogenous to the model. This stands in 
contrast to other papers such as Sobel (2020) and Kartik (2009), in which truthfulness is eval-
uated relative to an exogenous standard. This distinction is important for two different reasons: 
(i) conceptually, deception can arguably only be evaluated relative to equilibrium expectations. 
After all, if Receiver does not anyway believe Sender, then he cannot be deceived. And, (ii) 
methodologically, as explained below, endogenous deception costs imply that communication 

1 See, e.g., Abeler et al. 2019 for a survey of the extensive experimental literature that documents this cost.
2 See, e.g., https://en .wikipedia .org /wiki /Reasonable _person.
3 As emphasized by Sobel (2020), these definitions imply that a lie need not be deceptive, and deception need not 

involve lying.
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need not be monotone, which requires the development of new proof techniques and generates 
new insights.

Our approach conforms with traditional equilibrium analysis. We say that Sender’s strategy 
is credible if it does not induce Sender to engage in deception. Clearly, a strategy that is not 
credible cannot be sustained in equilibrium, and we are only interested in what can be commu-
nicated in equilibrium. However, although no deception occurs along the path of play, the mere 
possibility of deception has a large effect on the information that is conveyed by Sender. Indeed, 
equilibria are oftentimes interpreted as self-enforcing “social norms.” If a communication norm 
is established, it prescribes certain beliefs for the receiver. A deviating Sender understands that 
her Receiver will update his belief according to the norm, and that she is therefore deceiving him 
in a particular way. A conscientious Sender would be disturbed by such deception. The cost of 
deception in our model captures the magnitude of this disturbance.4

The ability of Sender to deceive Receiver is closely related to Sender’s ability to commit to 
her message strategy, in the sense of sending the specific message prescribed by the strategy 
and not a different message. A sufficiently large cost of deception implies “full commitment” 
of Sender to her message strategy. Such a commitment is obviously very valuable. It is a stan-
dard assumption in the literature on Bayesian persuasion (Kamenica and Gentzkow, 2011). By 
contrast, costless deception implies that Sender cannot commit to follow her message strategy 
and that, consequently, messages should be interpreted as mere “cheap talk” (Crawford and So-
bel, 1982). Both of these extreme cases serve as useful benchmarks for us. They have both been 
extensively studied in the literature. Through varying the cost of deception in our model, it is 
possible to span the range from cheap talk, or no commitment, to full commitment.

A motivating example. There are two players: Sender (she) and Receiver (he), and a binary state 
ω ∈ {0, 1}. The prior belief that ω = 1 is one-third. Receiver has to choose an action a ∈ {0, 1}. 
His payoff is given by −|a − ω|. Hence, Receiver prefers to take action a = 1 if and only if 
his posterior belief that the state is ω = 1 is at least one-half. The payoff for Sender is a. She 
therefore prefers that Receiver chooses action a = 1 regardless of the state.

Suppose that Sender knows the state. If Sender has no qualms about deceiving Receiver, then 
it is impossible to sustain informative communication in equilibrium. This is because Sender 
would never send a message that would lead Receiver to choose a = 0. Expecting this, Receiver 
would ignore Sender’s message, and choose the action a = 0, which is optimal given the prior 
belief. The payoff to Sender in this case is zero.

Suppose however that it is costly for Sender to deceive Receiver: if Sender deviates from the 
message that Receiver “anticipates” her to send given the state, then she incurs a cost. Suppose 
that this cost is equal to the difference between Receiver’s posterior belief that the state is ω = 1
that is induced by Sender’s actual message, and the belief that should have been induced by 
Sender’s anticipated message.

In this case, it is possible to sustain an equilibrium in which Sender reveals the state. In this 
equilibrium Sender sends message m1 in state ω = 1 and message m0 in state ω = 0. Receiver’s 
posterior belief that the state is ω = 1 following message m1 (resp. m0) is 1 (resp. 0), and so he 
takes action a = 1 (resp. a = 0). To verify that this is indeed an equilibrium, note that Sender 
cannot benefit from deceiving Receiver and sending message m1 in state ω = 0. Sender’s material 
gain from this deviation is one (because Receiver would take action a = 1 instead of a = 0). 

4 We are grateful to an anonymous referee for this interpretation.
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However, this gain is exactly offset by Sender’s cost of deception (because Receiver’s posterior 
belief that the state is ω = 1 following this deception is one instead of zero). The (expected) 
payoff to Sender in this equilibrium is one-third.

At the extreme, if deception is infinitely costly for Sender, then she can obtain an even higher 
payoff. In this case, Sender has full commitment power and so, as shown by Kamenica and 
Gentzkow (2011), she can obtain an expected payoff of two-thirds by employing the following 
strategy: when the state is ω = 1, send message m1; and when the state is ω = 0, send messages 
m1 and m0 with equal probabilities. Given this strategy, Receiver takes action a = 1 following 
message m1 and action a = 0 following message m0. Because deception is infinitely costly, 
Sender cannot benefit from deviating and sending message m1 when she should send message 
m0.

In Section 2 we present the model and formally define the notion of deception costs. In Sec-
tion 3 we study the implications of the possibility of costly deception in an environment in which 
Sender’s payoff depends on the state of the world. To that end, we introduce the possibility of 
costly deception into the uniform-quadratic specification of Crawford and Sobel’s (1982) model 
of strategic communication. The key difference between the equilibria that emerge in Crawford 
and Sobel’s (1982) model and in ours is that in Crawford and Sobel (1982) every equilibrium is a 
partition equilibrium in which each element of the partition is an interval of Sender’s types.5 By 
contrast, in our model Sender may induce a credible partition of the state space with non-convex
elements. However, we show that the optimal partition for Sender consists only of intervals. Our 
proof technique, which we explain in detail in Section 3, is substantially different from that of 
Crawford and Sobel (1982). This result allows us to explicitly solve for the optimal partition for 
Sender and describe how it relates to the optimal partition in Crawford and Sobel (1982). The 
fact that deception is costly facilitates more informative communication between Sender and Re-
ceiver compared to the most informative equilibrium in Crawford and Sobel (1982). In fact, we 
show that increasing the cost of deception is akin to decreasing the value of the parameter that 
measures the sender’s bias in Crawford and Sobel’s uniform-quadratic model.

In Section 4 we apply our definition of costly deception to a model in which Sender’s payoff 
is independent of the state of the world. For this purpose, we introduce the possibility of costly 
deception into the payoff environment of Kamenica and Gentzkow’s (2011) leading example. We 
provide a geometric characterization of Sender’s highest equilibrium payoff in this model. We 
show that this highest payoff is obtained on a partial concavification of Sender’s indirect payoff 
function with a bounded slope. We show that Sender’s value is continuous in the cost of deception 
parameter but may be discontinuous in prior beliefs. We describe environments where commu-
nication involves either more or less garbling compared to the case of full commitment. Finally, 
we show that a lower cost of deception always hurts Sender and discuss the circumstances under 
which it either benefits or hurts Receiver.

In Section 5 we discuss two additional issues: an alternative tie-breaking rule for Receiver and 
the number of messages employed by Sender in an optimal credible message function. Section 6
concludes.

5 Specifically, every equilibrium in Crawford and Sobel (1982) induces a partition of the sender’s type space into 
intervals such that all the sender’s types that belong to the same interval send the same message.
4
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1.1. Related literature

Sobel (2020) introduces game-theoretic definitions of lying and deception.6 Our definition of 
deception is consistent with his in that, in our model too, deception involves inducing “incorrect 
beliefs.” However, we also add a cost of deception that is not explicitly incorporated into Sobel’s 
model. Another key distinction is that, according to our definition, deception is measured with 
respect to equilibrium beliefs and is therefore endogenous, whereas in Sobel’s model, deception 
is measured with respect to the true state, and so is determined by an exogenous standard.7

Kartik (2009) is perhaps closest in spirit to the ideas introduced in the part of our analysis 
in which Sender’s preferences do depend on the state of the world. Kartik (2009) extends the 
analysis of Crawford and Sobel (1982) by incorporating the possibility of costly lying into the 
communication game. The cost of lying in Kartik’s (2009) model depends only on the state and 
the literal message used by the sender, which may be interpreted as an announcement about the 
state. Equilibria in Kartik’s model involve lying, but no deception. The key distinction between 
Kartik’s (2009) model and ours is that we measure the cost of deception in terms of the differ-
ences in the receiver’s induced beliefs. Another distinction is that, unlike in this paper, Kartik 
(2009) restricts attention to monotone equilibria. Consideration of non-monotone equilibria is 
important because it is not a-priori known whether the Sender- (or Receiver-) optimal equilib-
rium is indeed monotone. In Section 3 we devote a large part of the analysis to showing that the 
Sender-optimal equilibrium is indeed monotone also when deception is costly.8

A key difference between the equilibrium predictions of Kartik’s (2009) model (and other 
related models, e.g., Ottaviani and Squintani, 2006) and the model presented in our Section 3 is 
that while equilibria in Kartik’s (2009) model have a hybrid form, such equilibria do not exist in 
our Section 3 model. Specifically, in Kartik’s (2009) model, the sender may pool her type on an 
interval of low states, and fully separate elsewhere. By contrast, in our model, either there is full 
separation, or pooling within intervals. This difference is due to the fact that in Kartik’s (2009)
model, mimicking a higher type is associated with a cost that depends both on the message sent 
and on the true state, and therefore may be different for different types, whereas in our model 
deception cost depends only on differences in equilibrium beliefs.9

The paper that is closest to the analysis in Section 4 is Guo and Shmaya (2021).10 They 
consider a setting in which a sender provides probabilistic forecasts to a receiver through mes-
sages that have literal meaning in the form of “asserted distributions over states.” The sender 

6 Sobel employs Austin’s (1975) classification of speech acts: locution is what the speaker says; illocution refers to the 
interpretation of what she says; and perlocution is the consequences of the statement. A lie is a statement that the speaker 
believes is false. It is therefore defined purely in terms of locution. Deception is a statement or action that induces the 
audience to have incorrect beliefs. It is therefore an illocutionary act.

7 Sobel defines a message to be deceptive if it induces beliefs that are a mixture between the beliefs that are induced 
by some other message and some completely inaccurate beliefs that shift Receiver’s beliefs “further from the truth.”

8 Other models of lying consider perturbed versions of games in which, with positive probability, the sender is a 
behavioral type who always reports honestly; or the receiver is a behavioral type who interprets messages literally, 
believing that the state is m after receiving the message m (Chen, 2011); or that players incur lying costs when they 
break their promises to each other (Heller and Sturrock, 2020).

9 Specifically, if types ω and ω+� both reveal themselves in equilibrium, then the cost of deception that type ω incurs 
when mimicking type ω + � depends on � but not on ω. It follows that if separation is possible in some interval of the 
type space, then it is possible everywhere.
10 However, while in Section 4 we consider the case in which Sender’s preferences are independent of the state of the 
world, Guo and Shmaya (2021) consider general sender-receiver games in parts of their analysis.
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in their model bears a miscalibration cost that depends on the discrepancy between the forecast 
and the truth. By contrast, in our model the meaning of the sender’s messages is determined 
endogenously in equilibrium (i.e., messages have no literal meaning in our model) and the cost 
of deception depends on the distance between the beliefs that the sender actually induced and 
the beliefs that the sender should have induced in equilibrium. Guo and Shmaya’s notion of a 
calibrated equilibrium is credible according to our definition, but not vice-versa.11 Their main 
focus is on promotion games in which the receiver has two actions and the sender’s preferences 
are independent of the state, and on the case in which the cost intensity parameter is large. In this 
latter case, they show that the sender attains her full-commitment payoff under any extensive-
form rationalizable play. In our model, the sender also attains her full-commitment payoff when 
deception is sufficiently costly.12

Another sense in which the model of Guo and Shmaya (2021) is similar to ours is that by vary-
ing the cost intensity parameter, it bridges the gap between cheap-talk models (such as Crawford 
and Sobel, 1982, and Lipnowski and Ravid, 2020) and models in which the sender has full-
commitment power (Kamenica and Gentzkow, 2011). Another paper that bridges this gap is 
Lipnowski et al. (2022). In their model a sender commissions a study to persuade a receiver, but 
may influence the report with some state-dependent probability. They show that increasing this 
probability can benefit the receiver and can lead to a discontinuous drop in the sender’s payoffs.

When the sender’s preferences are independent of the state, the solution to the sender’s prob-
lem admits an elegant geometric characterization. Kamenica and Gentzkow (2011) famously 
characterize the sender’s value in terms of the concave envelope of her indirect payoff func-
tion. Lipnowski and Ravid (2020) characterize it in terms of the quasi-concave envelope of the 
sender’s indirect payoff function, and Lipnowski et al. (2022) characterize it in terms of a mixture 
of the concave and quasi-concave envelopes of the sender’s indirect payoff function. By contrast, 
in our framework, it is possible to characterize the sender’s value in terms of the concave enve-
lope of her indirect payoff function, with a bounded slope.

Other papers that study communication with partial commitment include Perez-Richet and 
Skreta (2022) and Nguyen and Tan (2019). Perez-Richet and Skreta (2022) consider a model 
in which an agent can manipulate a Blackwell experiment’s input at a cost. They characterize 
receiver-optimal tests under different constraints in this setting. In Nguyen and Tan (2019), a 
sender has the opportunity to privately change the publicly observed outcome of a previously 
announced experiment, at a cost that depends on the outcome. They describe conditions under 
which the sender does not alter the experiment’s outcome in the sender-optimal equilibrium. In 
their model, the sender benefits from assigning her preferred beliefs to messages that are harder 
to mimic.

Possibly misleading communication has also been studied experimentally. Recently, Fréchette 
et al. (2022) studied the role of commitment in communication experimentally using a frame-
work that nests models of cheap talk, information disclosure, and Bayesian persuasion. Gneezy 
(2005) and Fischbacher and Föllmi-Heusi (2008) are examples of experimental papers on com-

11 Guo and Shmaya (2021) study also equilibria in which costly miscalibration occurs. In contrast, in our model decep-
tion does not occur in equilibrium.
12 The insight that changes in beliefs constrain the principal appears also in the context of the economics of privacy. 
For example, in Eilat et al. (2021) a mechanism designer is constrained by how much she is allowed to learn about 
players where learning is measured in terms of the difference in the designer’s beliefs. See also Krähmer and Strausz 
(forthcoming) and Gradwohl (2018). In contrast, in our paper the cost due to the change in beliefs enters Sender’s payoff 
function rather than the constraints she faces.
6
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munication that associate the message to the state and treat messages as lies if they are not equal 
to the state.

Finally, the fact that the sender’s payoff depends directly on the receiver’s endogenous beliefs 
implies that the game we consider is a psychological game (Geanakoplos et al., 1989, Batti-
galli and Dufwenberg, 2009).13 This literature explains the distaste for lying as an aversion to 
guilt (Battigalli and Dufwenberg, 2007).14 Other papers consider communication between an in-
formed sender and an uninformed receiver within the framework of psychological games, as we 
do, but with a very different focus from ours. See for example Caplin and Leahy (2004), Ottaviani 
and Sørensen (2006), Ely et al. (2015), and more recently Hagenbach and Koessler (2022).

2. Model

Consider a communication game with two players: Sender (S, she) and Receiver (R,he). 
Players’ material payoffs depend on a state of the world and on Receiver’s action. The state of 
the world is drawn from a set � × �. The set � represents the “payoff relevant” part of the 
state.15 The set � = [0,1] is used to incorporate lotteries into Sender’s choice of messages, 
as described below. The prior probability of the payoff relevant part of the state is denoted by 
π ∈ �(�). Without loss of generality, we assume that the prior distribution over � is uniform. 
These two prior distributions are stochastically independent.

Sender observes the state of the world and sends a message to Receiver. We denote the set of 
possible messages by M , which for simplicity we assume to be an interval of real numbers.16

Upon observing the message sent by Sender, Receiver chooses an action from a compact set 
A ⊂ R.

Both Receiver and Sender are expected utility maximizers. The payoff for Receiver is given 
by uR(a, ω), where a ∈ A is Receiver’s action and ω ∈ � is the payoff relevant part of the state 
of the world. For any belief about the payoff relevant state p ∈ �(�), denote the set of optimal 
actions for Receiver by

A∗(p) = arg max
a∈A

Eω [uR(a,ω)] , (1)

where the expectation is computed according to the belief p. Sender’s material payoff is denoted 
uS(a, ω). If Sender deceives Receiver then she also incurs a cost of deception as described be-
low. To simplify notation, if Receiver randomizes over actions using a distribution â ∈ �(A), 
then we interpret uS(â, ω) as the expected value Ea [uS(a,ω)] where the expectation is com-
puted according to the distribution â. The functions uR(a, ω) and uS(a, ω) are assumed to be 
continuous.

Receiver’s strategy is a measurable function ã : M → �(A). Sender’s strategy is a measurable 
function σ : � ×� → M .17 We refer to Sender’s strategy as her message function. Each message 

13 For a recent survey of the literature on psychological games see Battigalli and Dufwenberg (2022).
14 Loginova (2012) studies guilt aversion in the setup of Crawford and Sobel (1982) and characterizes the partitional 
equilibria in the uniform-quadratic version of this model.
15 We assume that � is a compact metrizable space. We let �(�) denote the set of all Borel probability measures over 
�, endowed with the weak* topology.
16 More generally, the set of messages can be given by any sufficiently rich measurable standard space, where for 
richness it suffices to assume that the cardinality of M is at least the cardinality of � × �.
17 The incorporation of the set � into the state space ensures that the state space is sufficiently rich so that the assumption 
that Sender employs a pure strategy involves no loss of generality.
7
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that is sent under σ induces a posterior distribution over the payoff relevant states ω ∈ �, which 
we denote by pσ

m ∈ �(�).18

Fix a message function σ for Sender. According to the message function σ , Sender is 
supposed to send message m = σ(ω, θ) in state (ω, θ). If, instead, Sender sends message 
m′ �= σ(ω, θ), then she is said to deceive Receiver because message m′ induces the “wrong” 
posterior belief pσ

m′ instead of pσ
m. We assume that the cost to Sender from sending message m′

instead of message m = σ(ω, θ) is

c
(
m′ |m,σ

)= α · d (pσ
m′,pσ

m

)
,

where d : � (�) × � (�) → R+ is a distance function between beliefs over �, and α ≥ 0 is a 
parameter that scales the cost of deception.19 That is, the cost of sending a message m′ when the 
state of the world is (ω, θ) is proportional to the distance between the posterior belief pσ

m that 
should have been induced by the message m = σ(ω, θ) and the posterior belief that is actually 
induced by the message m′, which is pσ

m′ .
Formally, an equilibrium of the communication game is a message function σ for Sender, a 

response strategy ã for Receiver, and Receiver’s beliefs {pσ
m}m∈M such that:

1. For every message m that is sent by σ , Receiver’s posterior belief about the state pσ
m is 

consistent with Sender’s message function.20

2. Receiver’s response to any message m is optimal given his belief.21

3. Sender’s message function is optimal given Receiver’s response strategy, the state, and the 
cost of deception. That is, for any state (ω, θ) ∈ � × � and message m = σ(ω, θ),

uS(ã(m),ω) ≥ uS(ã(m′),ω) − c
(
m′ |m,σ

)
, (2)

for every message m′ ∈ M .

A message function σ is said to be credible if it is part of an equilibrium of the communication 
game. We refer to condition (2) as Sender’s credibility constraint.

Like other communication games, the communication game with costly deception studied 
here may also have multiple equilibria. One equilibrium that always exists is an “uninformative 
equilibrium,” in which Sender employs a trivial message function that sends the same message 
in all states, Receiver’s belief coincides with the prior, and Receiver best responds to this belief.

We focus on Sender-optimal equilibria of the communication game. A Sender-optimal equi-
librium is a solution to the following problem:

18 More rigorously, since M is a standard space, a regular conditional probability distribution exists (Shiryaev (1996), 
Theorem 4, p. 227). And, any two such distributions yield the same beliefs for all but a measure zero set of messages. 
The posterior distribution pσ

m∈M
mentioned above is one version of such a distribution.

19 Formally, we assume that d(x, y) is a pseudometric. That is, it satisfies the following four properties: it is nonnegative, 
symmetric, d(x, x) = 0 for every x (but, possibly, d(x, y) = 0 for some x �= y), and it satisfies the triangle inequality. 
Note that the triangle inequality is not satisfied by the quadratic lying cost in Kartik (2009) or the Kullback-Leibler 
distance in Guo and Shmaya (2021).
20 If Receiver observes a message that was not supposed to be sent by σ , then we assume that Receiver’s belief coincides 
with his belief after some arbitrary message that is sent by Sender in equilibrium. The exact identity of the on-path 
message in this case is not important. This assumption ensures that off-path messages never serve as a tempting deviation 
for Sender.
21 If Receiver has a unique best response, then he chooses it; otherwise, Receiver can mix among his best responses. 
Namely, the support of the distribution ã(m) is a subset of A∗(pσ

m).
8
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max〈
σ,ã,{pσ

m}〉 Eω

[
Em

[
uS (ã(m),ω) | ω

]]
(SP)

where 
〈
σ, ã, {pσ

m}〉 is an equilibrium of the communication game. In problem (SP), the inner 
expectation Em is evaluated according to the probability distribution over messages induced by 
σ and θ ∈ �, conditional on the state ω ∈ �. The outer expectation Eω is evaluated according to 
the prior probability distribution over states π .

On the equilibrium path, Sender’s message function σ determines Receiver’s beliefs following 
every message that is sent by Sender. Receiver’s beliefs determine Receiver’s response. Notice 
that if for any belief Receiver has a unique best response, then the equilibrium is completely 
pinned down by Sender’s message function σ (provided that it satisfies the credibility constraint, 
(2)). We analyze such an environment in Section 3 below.

Increasing the value of the deception cost parameter α relaxes Sender’s credibility constraint. 
This expands the set of possible equilibria. It immediately follows that:

Observation 1. Sender’s expected payoff in the solution to Problem (SP) is weakly increasing in 
the cost parameter α.

It is noteworthy that Sender’s credibility is closely related to Sender’s ability to commit to 
her message function. Specifically, credibility imposes an incentive compatibility constraint on 
Sender. If the cost of deception c(·|·, ·) is infinite, then Sender has full-commitment power. That 
is, she would never deviate from any message function she employs, and so this incentive com-
patibility constraint is never binding. Otherwise, Sender may benefit from deviating from certain 
messages. In this case, Sender has only partial-commitment power because she can commit only 
to those message functions from which she would not want to deviate. Partial commitment limits 
Sender’s ability to communicate. However, as famously shown by Crawford and Sobel (1982), 
nontrivial communication is possible even when the cost of deception is zero and Sender has no 
commitment power whatsoever.

Finally, as mentioned above, what distinguishes our approach is that in our model the cost 
of deception is endogenous: it depends on the distance between beliefs induced by Sender’s 
message function σ in equilibrium.

3. Credibility with state-dependent utilities

We now turn to apply our notion of credibility to the payoff specification of Crawford and 
Sobel (1982). We focus our attention on the classic uniform-quadratic version of the model.

Suppose that � = [0, 1], with a uniform prior probability distribution. The set of Receiver’s 
actions is given by A = [0, 1]. Sender’s and Receiver’s payoff functions are given by uS(a, ω) =
− (a − (ω + b))2 and uR(a, ω) = − (a − ω)2, respectively, for some b ≥ 0. It is easy to verify 
that for any belief p Receiver’s optimal action is unique. As explained above, in this case Sender’s 
message function pins down the equilibrium.

For simplicity, we restrict attention to the case where Sender chooses a measurable message 
function σ : � → M .22 This allows us to identify a message function with the partition it induces 
over �. We also identify each message m with the set of states where message m is sent, m ≡
{ω : σ(ω) = m}.

22 The restriction to σ : � → M instead of σ : � × [0, 1] → M implies that we assume that Sender employs a pure 
strategy in each state ω ∈ �.
9
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Denote the Lebesgue measure of message m by |m|. This is also the probability that message 
m is sent in equilibrium. We denote the expected state conditional on message m (mean of m) by 
μm and denote the infimum and supremum of m by m and m, respectively.23

We assume that the distance between any two beliefs is given by the difference between their 
means. That is, the cost of sending message m′, in a state that belongs to message m, is given by

c(m′|m,σ) = α · |μm − μm′ |.
Notice that when α = 0, our model coincides with that of Crawford and Sobel (1982).

Receiver observes the message sent by Sender and chooses an action a ∈ A. A simple calcu-
lation shows that the action that maximizes Receiver’s payoff, following message m, is given by 
the mean of m. I.e., (with a slight abuse of notation),

ã (m) = μm.

The expected payoff to Sender from a given partition of the state space � into messages is given 
by the expected variance of the messages in this partition:

−Em [Var [ω|ω ∈ m]] (3)

up to a constant, where the expectation is taken according to the distribution over messages 
induced by the partition.24

The credibility condition (2) implies that type ω ∈ m of Sender prefers sending message m to 
sending any other message m′:

− (ω − μm + b)2 ≥ − (ω − μm′ + b)2 − α |μm′ − μm| . (4)

The left-hand side of (4) is type ω’s payoff from sending the message m, after which Receiver 
takes the action μm. The right-hand side is type ω’s payoff from sending the message m′, in-
ducing Receiver’s action μm′ but incurring a deception cost of α |μm′ − μm|. A partition that 
satisfies condition (4) is said to be a credible partition.

The objective of Sender is to find a credible partition that maximizes the objective function 
(3). Since any two messages that induce an identical expectation can be merged into one message 
without affecting credibility or the objective function’s value, there is no loss of generality in 
assuming that each message in the partition chosen by Sender has a different mean.

The next lemma establishes a connection between the bias parameter b, the deception cost 
parameter α, and the number of messages included in a credible partition:

Lemma 1. If α ≥ 2b then revelation of the state (the “truthful partition”) is credible. If α < 2b

then the number of messages in any credible partition is bounded from above by 1/(2b − α).

Thus, when α ≥ 2b the solution to Sender’s problem is immediate. In this case the truthful 
partition in which Sender reveals the state is credible, and the value of Sender’s objective function 
(3) is zero (and therefore Sender’s payoff is −b2). This implies that the truthful partition is also 
optimal.

23 The mean μm is computed with respect to the version of the posterior distribution pσ
m that we fixed in footnote 18.

24 Given a message function σ , Sender’s payoff is given by −EmEω∈m

[
(ã(m) − ω − b)2

]
, which is equal to 

−EmEω∈m

[
(ã(m) − ω)2

]
up to a constant that is independent of σ . This last expression is equal to minus the ex-

pected induced variance (3) and also (by definition) to Receiver’s expected payoff.
10
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We henceforth restrict our attention to the case where α < 2b. Since, by Lemma 1, we may 
assume that Sender employs a finite number of messages, no loss of optimality is implied by 
assuming that all messages included in a credible partition have a positive measure. Given a 
credible partition, we order the messages according to their conditional means, and denote the 
kth message by mk and its mean by μk .

The credibility constraint (4) is equivalent to the following two constraints holding for every 
k < J , where J denotes the number of messages in the partition:

μk + μk+1

2
− mk ≥ b − α

2
. ICup(k)

μk−1 + μk

2
− mk ≤ b + α

2
. ICdown(k)

Constraints ICup(k) and ICdown(k) ensure that when the state ω belongs to message mk Sender 
prefers to send mk over sending messages with higher and lower means, respectively.25

We proceed with the following definition:

Definition 1. A partition of � into convex messages (intervals) is said to be a convex partition.

Crawford and Sobel (1982) famously showed that any equilibrium of the cheap-talk model 
induces a convex partition (in which the first element determines the structure of the entire parti-
tion). When deception is costly this result no longer holds. Specifically,

(1) In Crawford and Sobel (1982) equilibrium partitions are monotone: if type ω is indifferent 
between two messages m, m′ with μm < μm′ , then every type ω′ > ω strictly prefers m′ to m
and every type ω′′ < ω strictly prefers m to m′ (this is a consequence of the assumption that 
Sender’s preferences satisfy the single-crossing property). By contrast, in our setting, because 
the cost of switching to a different message is endogenous and depends on the type’s equilibrium 
message, it is possible to have two types ω < ω′ such that ω′ prefers m to m′ but ω prefers m′ to 
m. Moreover, any partition is credible for values of α that are sufficiently high.

(2) In Crawford and Sobel (1982) the first element of the partition determines the entire partition 
structure. This is because the structure of the partition is determined by a set of types who are 
indifferent between pairs of contiguous elements in the partition. By contrast, in our case, fixing 
the first element of a partition (even a convex partition) does not pin down the next elements 
of the partition. It is noteworthy that indifference conditions are not a necessary feature of the 
partition. Namely, it is possible to have convex partitions in which no type is indifferent between 
any pair of messages.

We proceed by showing that, although incentive compatibility does not imply convexity of 
the induced partition, the optimal partition (i.e., the one that maximizes the objective function 
(3)) is in fact convex. The main challenge is that, given a credible partition, it is difficult to find 
a credible “global” improvement for it. And, “local” improvements may violate credibility. Our 
approach is to perform a sequence of local improvements that converge to a convex partition 
while correcting for violations of credibility along the way.

25 To see this, note that ICup(k) is tightest for messages with “adjacent means.” And if the constraint is satisfied for 
ω = mk then it is satisfied for all ω ∈ m. On the other hand, if the constraint is not satisfied for ω = mk , then there exists 
a state ω ∈ m for which it is violated. An analogous argument applies for the ICdown constraints.
11
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The next definition formalizes a notion of a partially convex partition. It is instrumental in 
describing the way in which a given partition is iteratively transformed through a sequence of 
steps, parametrized by k, into a fully convex partition.

Definition 2. A partition of � = [0, 1] into messages is said to be “tightly packed with k mes-
sages” on the interval [0, l] if:

1. The union of the first k messages is equal to [0, l];
2. Each message m1, . . . , mk is convex; and
3. The incentive compatibility constraints ICup(1), . . . , ICup(k − 1) are all binding.

The next lemma characterizes the maximal number of messages that can be tightly packed on 
the interval [0, l].

Lemma 2. For any l ∈ [0, 1], the maximal number of messages that can be tightly packed on the 

interval [0, l] is given by I (l) ≡
⌈√

1
4 + l

2b−α
− 1

2

⌉
.26

As expected, if α = 0 then I (1) is also the number of intervals in the most informative equi-
librium identified in the uniform quadratic example in Crawford and Sobel (1982).

The next proposition describes the optimal partition for Sender.

Proposition 1. The optimal partition of � = [0, 1] consists of I (1) =
⌈√

1
4 + 1

2b−α
− 1

2

⌉
tightly 

packed messages on �.

To prove Proposition 1 we provide an iterative convergent algorithm that improves upon any 
credible partition that does not partition the set � into I (1) tightly packed messages. We now 
describe the algorithm and defer the detailed proof to the appendix.

Start with a credible partition that does not consist of I (1) tightly packed messages on �. Let 
k be the highest index for which the messages m1, . . . , mk−1 are tightly packed on the interval [
0, lk−1

]
, where lj ≡ (|m1| + · · · + ∣∣mj

∣∣) for any j > 0. Fig. 1(a) illustrates such a partition 
(notice that messages mk, mk+1, mk+2 are not convex). If no such collection of messages exists, 
then k = 1. If all the messages are already tightly packed, but the number of messages is less 
than I (1), then k is equal to the number of messages in that partition.

The algorithm described above “packs message mk” and produces a new partition in which 
I (lk) messages are tightly packed on the interval [0, lk], all the ICup constraints are satisfied, and 
the modified partition yields a higher value of the objective function (3) to Sender, compared to 
the original partition.

The algorithm consists of two parts. In Part I message mk is “convexified to the left” through 
a series of shifts of states across messages until message mk is convex and placed immediately 
to the right of message mk−1. This change preserves the probability measure of all the messages. 
At the end of Part I of the algorithm, the partition takes the form depicted in Fig. 1(b). Intuitively, 
convexification to the left improves the value of the objective function (3) because it decreases 
the variance of some messages while not affecting the variance of others and not affecting the 

26 The function �x� denotes the smallest integer greater than or equal to x.
12
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Fig. 1. The Convexification of Message mk .

Algorithm Convexify and repack.
Require: Messages m1, ..., mk−1 are convex and tightly packed on the interval 

[
0, lk−1

]
Part I - Convexify message mk to the left

1: if message mk is not convex and adjacent to message mk−1 then
2: set mk = [

mk−1,mk−1 + |mk |];
3: for every j > k such that mj < mk do:
4: replace every state ω ∈ mj by the state ω + |[ω, mk] ∩ mk |;
5: end if

Part II - Repack

6: Repartition the interval 
[
0, lk

]
into I (lk) tightly packed messages.

probabilities with which messages are sent. However, notice that after the change ICup(k − 1) 
may no longer hold. This is because the convexification to the left of mk decreases the mean μk , 
making it more attractive for higher types in mk−1 to deviate and report mk . To restore incentive 
compatibility we proceed to the second part of the algorithm.

Part II of the algorithm repartitions the interval [0, lk] into I (lk) tightly packed messages. In 
the proof we show that this suffices to ensure that all the other ICup constraints are also satisfied, 
and in particular ICup(I (lk)). The result of this part is depicted in Fig. 1(c). Note that it could 
be the case that I (lk) = k − 1, so that repartitioning may in fact decrease the total number of 
messages. Nevertheless, in the proof we show that the overall effect of convexifying mk to the 
left and repartitioning the interval [0, lk] improves the objective function’s value.

If the partition generated by the algorithm does not consist of I (1) messages that are tightly 
packed on �, then we apply the algorithm again on that partition. By Lemma 1, the number of 
messages in the original partition is bounded, therefore the process converges in a finite number 
of iterations.

In the proof we also show that whenever all the ICup constraints are binding, which is the case 
in any partition that consists of only tightly packed messages, then all the ICdown constraints are 
satisfied as well. Thus, the obtained partition, in which I (1) messages are tightly packed on � is 
credible.

We conclude this section with a characterization of the messages that are induced by the 
optimal partition.

Corollary 1. The optimal partition consists of l(1) messages. Message mk , k ∈ {1, . . . , I (1)}, is 
given by the interval [mk−1, mk), where
13
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mk = k

I (1)
+ 2

(
b − α

2

)
k(k − I (1)).

Notably, the value of mk that is described in the corollary is identical to the value characterized 
by Crawford and Sobel (1982), except that in the expression here, Sender’s bias is offset by the 
cost parameter, so that instead of b in Crawford and Sobel’s result, we have b − α/2. Indeed, a 
higher value of the cost parameter α allows Sender to communicate her information about the 
state of the world more effectively, which increases her expected payoff.

4. Credibility with sender state-independent utility

In this section we incorporate our notion of credibility into a specification in which Sender’s 
payoff is independent of the state. We impose the following three assumptions. First, we assume 
that the payoff-relevant part of the state ω is a real-valued random variable with a finite support. 
Next, we assume that the set of Receiver’s optimal actions depends only on the expected state. 
That is, given a posterior belief p, the set A∗(p) defined in (1) depends only on the mean of 
the distribution p, denoted by μp. Finally, we assume that Sender’s preferences over Receiver’s 
actions do not depend on the state, and to simplify notation, we henceforth omit the state from 
Sender’s material payoff function.27

To facilitate a comparison between our model and that of Kamenica and Gentzkow (2011)
(henceforth, KG) we start by writing Sender’s problem as a constrained maximization problem 
over distributions of posterior beliefs.

We define the correspondence ûS : �(�) � R to be the indirect payoff of Sender. Thus, 
ûS(p) is the (set of) payoff(s) that Sender can achieve by inducing a posterior belief p to which 
Receiver best responds. For a belief p for which Receiver has a unique best response (i.e., A∗(p)

is a singleton), we have (with a slight abuse of notation),

ûS(p) = uS(A∗(p)). (5)

Otherwise, if Receiver’s best response at p is not unique, then ûS(p) = {uS(ã) : ã ∈ �(A∗(p))}. 
The fact that uR and uS are continuous implies that ûS is a continuous correspondence.

Recall that every message m that is sent under a message function σ induces a posterior belief 
pσ

m on the payoff-relevant part of the state ω. Accordingly, a message function σ induces a distri-
bution of posterior beliefs. We denote such a distribution of posterior beliefs by τ ∈ � (�(�)), 
and the probability that τ induces a posterior p ∈ � (�) by τ (p).

A distribution of posterior beliefs τ is said to be Bayes plausible if the expected posterior 
belief it induces is equal to the prior. As famously shown by (KG) and Aumann and Maschler 
(1995), a distribution of posterior beliefs τ can be induced by some message function σ if and 
only if τ is Bayes plausible.

Thus, we can rewrite Sender’s problem (SP) as follows:

max
τ

max{
vp :vp∈ûS (p)

}
p∈Supp(τ )

∑
p∈Supp(τ )

vp · τ (p) (SP1)

27 Kamenica and Gentzkow (2011) refer to this case as one in which the “sender’s payoff depends only on the expected 
state.” This holds, for example, if uR(a, ω) = −(a − ω)2 and uS(a, ω) = a. It is easy to verify that in this case, for 
any belief p, Receiver’s optimal action is given by μp . Thus, Sender’s payoff from inducing the belief p is also μp . 
Other papers that employ state-independent Sender’s preferences in large parts of their analysis include Guo and Shmaya 
(2021), Lipnowski and Ravid (2020), and Lipnowski et al. (2022).
14
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s.t.
∑

p∈Supp(τ )

p · τ (p) = π (Bayes Plausibility)

vp ≥ vp′ − α · d (p,p′) , ∀p,p′ ∈ Supp (τ ) ,

(Credibility)

where Supp (τ ) denotes the support of τ , and vp denotes Sender’s equilibrium payoff under pos-
terior belief p. When Receiver has a unique best response for any belief p, the indirect payoff 
ûS (·) is a function, and so the inner maximum operator is degenerate because vp = ûS(p) for 
all p ∈ Supp(τ ). In this case Sender’s payoffs are pinned down by the induced beliefs. When 
Receiver has multiple best responses for some beliefs, the indirect payoff ûS (·) is a correspon-
dence. In this case, every payoff in ûS (p) can be obtained by some randomization performed by 
Receiver via an appropriately chosen tie-breaking rule. The inner maximum operator captures the 
fact that the equilibrium that is best for Sender employs the Sender-optimal tie-breaking rule.28

A distribution of posterior beliefs τ is said to be feasible if it is Bayes plausible and there exists 
a set of Sender’s payoffs 

{
vp : vp ∈ ûS (p)

}
p∈Supp(τ )

such that credibility is satisfied. Note that 
the “standard” problem of Bayesian persuasion involves maximizing the same objective function, 
under the same Bayes plausibility constraint (and with a degenerate inner maximum operator 
because in the Sender-optimal equilibrium, Receiver always breaks ties in favor of Sender, ex-
post). The new component that is introduced in our costly deception framework is the credibility 
constraint.

We now proceed to characterize the solution to Sender’s problem. Given Sender’s indirect 
payoff ûS , the convex hull of the graph of ûS , denoted by co

(
ûS

)
, consists of all the convex 

combinations of elements in the graph of ûS . That is,

co
(
ûS

)
=
⎧⎨
⎩

(p, y) : ∃p1, . . . , pk,pi ∈ �(�) for all i, and ∃λ1, . . . , λk ≥ 0,
∑k

i=1 λi = 1
such that p =∑k

i=1 λipi and y =∑k
i=1 λivpi

where vpi
∈ ûS (pi)

for all i

⎫⎬
⎭ .

Given α ≥ 0, we define the set coα

(
ûS

)
similarly to co

(
ûS

)
, with one difference: it consists 

of all the convex combinations of elements in the graph of ûS that satisfy an additional set of 
pairwise restrictions that are parametrized by α:

coα

(
ûS

)

=

⎧⎪⎨
⎪⎩

(p, y) : ∃p1, . . . , pk,pi ∈ �(�) for all i, and ∃λ1, . . . , λk ≥ 0,
∑k

i=1 λi = 1
such that p =∑k

i=1 λipi and y =∑k
i=1 λivpi

where vpi
∈ ûS (pi)

for all i and
|vpj

−vpi
|

d
(
pj ,pi

) ≤ α for every i, j

⎫⎪⎬
⎪⎭ ,

with the convention that 0
0 = 0, so that if y ∈ ûS(p) then (p, y) ∈ coα

(
ûS

)
for all α ≥ 0.

If y ∈ ûS(p) then we say that p is the underlying posterior belief that induces y. The set 
coα

(
ûS

)
contains all the pairs (p, y) for which the value y can be achieved by randomization over 

payoffs {vpi
} that are in the graph of ûS , provided that: (i) the weights of the randomization are 

28 Note that as shown in Example 2 below, the tie-breaking rule employed by Receiver in Sender’s ex-ante optimal 
equilibrium does not necessarily select the Sender’s ex-post optimal action for every induced posterior belief. See also 
Lipnowski and Ravid (2020) and Lipnowski (2020) for how tie-breaking that does not benefit the sender ex-post, can be 
beneficial to the sender ex-ante.
15



R. Eilat and Z. Neeman Journal of Economic Theory 207 (2023) 105572
such that the associated underlying posteriors average to p, and (ii) the randomization does not 
involve payoffs whose difference, divided by the distance between their underlying posteriors, is 
“too large” (i.e., exceeds α), which would make deception attractive to Sender.

Given α ≥ 0, define the value of belief p as follows29:

V (p,α) ≡ max
{
y : (p, y) ∈ coα

(
ûS

)}
.

Given a prior belief π and a payoff y ∈ R, if (π, y) ∈ coα

(
ûS

)
then, by definition, there 

exists a Bayes plausible distribution τ that is credible and induces the expected payoff y. And, 
conversely, given π , if y can be induced by some Bayes plausible and credible distribution τ
then (π, y) ∈ coα

(
ûS

)
. The next result follows immediately.

Proposition 2. For every α ≥ 0, the highest value that Sender can achieve in the problem (SP1)
is given by V (π,α).

Higher deception costs expand the domain of message functions that are deemed credible, 
from which Sender can pick her preferred one. Indeed, as pointed out in Observation 1 in 
Section 2, higher deception costs are always beneficial for Sender: formally, if α < α′ then 
coα

(
ûS

)⊆ coα′
(
ûS

)
, which implies that V (π, α) ≤ V (π, α′) for any prior π .

The structure of the set coα

(
ûS

)
depends on the distance function d . As before, we assume 

that the distance between any two beliefs p, p′ ∈ �(�) is measured by the difference between 
the means induced by these distributions, i.e.,

d
(
p,p′)= ∣∣μp − μp′

∣∣ . (6)

Therefore, the cost of inducing the belief p′, when the belief p should have been induced, is 
given by α · ∣∣μp − μp′

∣∣. Notice that if α is sufficiently large, then the credibility constraint is 
non-binding and Sender’s problem becomes identical to that of the Bayesian persuader of KG 
that has full commitment power.

Under the specification of the distance function in Equation (6), the credibility constraint in 
Sender’s problem (SP1) can be rewritten as follows:∣∣∣∣ vp − vp′

μp − μp′

∣∣∣∣≤ α for all p,p′ ∈ Supp(τ ) (7)

where vp and vp′ are Sender’s equilibrium payoffs under the posterior beliefs p and p′, respec-
tively. It follows that for any two posterior beliefs that Sender induces in equilibrium, it must be 
the case that the material gain from deviating from one posterior belief to the other, divided by 
the distance between the means of the two posteriors, does not exceed α.

The following example provides a graphical illustration of the credibility constraint.

Example 1. Suppose that the payoff-relevant part of the state space is binary, with � = {0,1}. In 
this case, a distribution p over � can be represented by the probability q that the state is ω = 1, 
and the mean of p is given by μp = q .

Condition (7) has a geometric interpretation. To see it, consider the indirect payoff function 
ûS that is depicted in Fig. 2(a). Suppose that the prior distribution is given by some π ∈ [0, 1]. In 
Bayesian persuasion with full commitment (α = ∞) Sender optimizes by “splitting” π into two 

29 The fact that ûS is continuous implies the existence of a maximum.
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ûs
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Pr(ω = 1)

ûs
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Pr(ω = 1)
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α

q ′ q ′′ 1

ûs α = ∞

α = 0

0

Pr(ω = 1)

(a) ûS (b) V (π,α) for fixed α (c) V (π,α) with α ∈ [0,∞]
Fig. 2. A Geometric Illustration of the Credibility Constraint. (For interpretation of the colors in the figure(s), the reader 
is referred to the web version of this article.)

probabilities, q ′ and q ′′, that are such that λ · q ′ + (1 − λ) · q ′′ = π for some λ ∈ [0,1] (Bayes 
plausibility) so as to maximize the value of the objective function λ · ûS

(
q ′)+ (1 − λ) · ûS

(
q ′′). 

The credibility constraint (7) implies that the slope of the line that connects the payoffs associated 
with these two probabilities, ûS

(
q ′) and ûS

(
q ′′), cannot exceed α.

Fig. 2(b) depicts Sender’s value V (π, α) (in blue) for a fixed deception cost α and different 
values of π (the horizontal axis depicts the probability Pr(ω = 1) associated with each π ). Note 
that the graph of this function consists of parts that coincide with the graph of ûS (when sending 
one uninformative message is optimal for Sender), and a line segment with slope α that connects 
points on the graph of ûS (when it is optimal for Sender to send messages that induce the posterior 
beliefs q ′ and q ′′ with probabilities that depend on π ).

Fig. 2(c) illustrates what happens to V (π, α) when α is varied between zero and infinity. 
The uppermost dotted line in the figure corresponds to the graph of V when deception costs 
are infinite, i.e., α = ∞ (or are just high enough to be non-binding). At the other extreme, the 
flat dotted line corresponds to the case where deception is costless. In that case Sender can only 
induce posterior beliefs that have identical indirect payoffs. This is the case that is analyzed by 
Lipnowski and Ravid (2020). The dotted lines in between correspond to different values of α, 
where higher lines correspond to higher values of α. �

4.1. Continuity and discontinuity of Sender’s value function

We now turn to discuss the continuity of the value function V (π, α). When V is discon-
tinuous, Sender’s expected payoff is highly sensitive to small changes in the parameters of the 
environment.

Our first observation is that Sender’s value function may be discontinuous in the prior π . This 
is illustrated in the next example, which exploits a “jump” in Sender’s payoff ûS . Such jumps are 
typical when the set of Receiver’s actions is finite.

Example 2. Suppose that there are two states, � = {0,1}, with prior probability π on state ω = 1. 
Receiver chooses one of two actions a ∈ {0, 1} and his payoff function is given by uR(a, ω) =
−|a − ω|. Sender’s payoff function is given by uS(a, ω) = a. Thus, Sender’s indirect payoff ûS

is given by the bold line depicted in Fig. 3(a), where the values on the horizontal axis represent 
the belief that ω = 1.
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Fig. 3. α-dependent tie breaking.

If π > 1
2 , then Sender-optimal equilibrium is uninformative. In this equilibrium, Sender sends 

the same message in both states, and Receiver takes the action a = 1, which produces a payoff 
1 for Sender. Otherwise, if π ≤ 1

2 , then in the optimal equilibrium Sender induces the posterior 
beliefs 0 and 1

2 with probabilities 1 − 2π and 2π , respectively. When his posterior belief is 
0, Receiver takes the action a = 0. When his posterior belief is 1

2 , Receiver is indifferent. In 
this case, he takes the action a = 1 with probability min{α

2 , 1} and the action a = 0 with the 
complementary probability. It is not difficult to verify that this is the Sender-optimal equilibrium, 
and that Sender’s expected payoff in this case is given by

V (π,α) =
{

π · min{α,2} if π < 1
2

1 if π ≥ 1
2

.

This function is discontinuous in π at the point π = 1
2 for values of α < 2. �

We thus obtain,

Observation 2. Sender’s value V (π, α) may be discontinuous in the prior π (when the value of 
α is not too large).

Inspection of Sender’s value V (π, α) in Example 2 reveals that it is continuous in the cost 
parameter α. This continuity is facilitated by a judicious use of the tie-breaking rule employed 
by Receiver when the posterior belief on ω = 1 is 1

2 . Fig. 3(b) depicts the way in which Sender’s 
equilibrium payoff from inducing posterior belief p = 1

2 varies continuously with α in a way that 
preserves the continuity of V (π, α) in α for every π .

Continuity in α holds more generally. The main challenge in proving this result stems from the 
fact that the correspondence that maps the parameters (π, α) into the set of feasible distributions 
τ is not lower hemi-continuous in α (and therefore Berge’s maximum theorem does not apply 
in our case). This implies that for a given distribution of posterior beliefs τ , a small change in 
α may imply that there is no feasible distribution of posterior beliefs in the neighborhood of τ . 
This is illustrated in the next example.
18
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Fig. 4. Continuity of the Distribution of Posteriors.

Example 3. Suppose that there are two states, � = {0, 1}, with equal prior probabilities. As 
before, we represent a distribution over � by the probability that the state is ω = 1. Assume that 
the prior probability is given by π = 0.5, that α = 0.5, and that the function ûS is given by the 
bold curved line depicted in Fig. 4(a). The optimal credible distribution of posterior beliefs in 
this example is τ = (0.1, 0.9; 12 , 12 ) and it gives Sender an expected value that is equal to 0.4. To 
verify that credibility is satisfied, notice that the slope of the line that connects the two points 
(0.1, 0.2) and (0.9, 0.6) (depicted in light blue) is 0.5, which is equal to α.

Suppose now that α is slightly decreased. It is impossible to find two posterior beliefs close 
to 0.1 and 0.9, respectively, that satisfy the credibility constraint (i.e., such that the line that 
connects the two points associated with these posteriors has a slope less than or equal to the new 
value of α, which is less than 0.5). Thus, the correspondence that maps the parameters (π, α)

into the set of feasible distributions is not lower hemi-continuous at (π, α) = (0.5, 0.5). �

To overcome this difficulty, we show that given π , even if a feasible distribution τ is such that 
for some small change in α there is no feasible distribution that is close to τ , then there must 
exist another feasible distribution τ̂ , that achieves the same expected value for Sender as τ , and 
τ̂ is such that for small changes in α there is a feasible distribution that is close to τ̂ .

Example 3 (continued). As illustrated in Fig. 4(b), there exists a feasible distribution τ̂ =
(0.1, 0.7; 13 , 23 ) that generates the same expected value for Sender of 0.4 as τ = (0.1, 0.9; 12 , 12 ). 
Note that for any parameters α′ that is close to α = 0.5, there exists a distribution of posterior 
beliefs that is feasible with respect to (π = 0.5, α′) and is close to τ̂ . For example, it is possible 
to pick a binary distribution of posterior beliefs that is supported on 0.1 and 0.7 − ε for some 
small ε > 0 that depends on α′ and the curvature of the function ûS . �

We thus obtain the following result.
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Proposition 3. For any prior π , Sender’s value V (π,α) is continuous in α.

Two remarks are in order. First, the possible discontinuity of Sender’s value V (π,α) in π
stands in contrast to the continuity of the value function in standard Bayesian persuasion (which 
is equivalent to the case where α = ∞). This is because V (π,∞) is the concave closure of the 
continuous correspondence ûS , and is therefore continuous.

Second, recall that the cost of deception parameter α captures Sender’s ability to commit to 
her message function. Proposition 3 thus asserts that Sender’s value is continuous in Sender’s 
commitment power. This result stands in contrast to the possible discontinuity of Sender’s value 
in Sender’s credibility in the model of Lipnowski et al. (2022).30

4.2. The effect of the cost of deception

As the cost of deception α decreases, the credibility constraint becomes tighter, and so the 
set of message functions that Sender can employ in equilibrium shrinks. Sender can restore her 
credibility by either adopting a message function in which deception is more costly, or by adopt-
ing a message function in which the gain from deception is smaller. In this subsection we discuss 
these two alternatives.

The next example shows how Sender can increase the cost of deception in response to a lower 
value of α by moving the means of the induced posterior beliefs farther apart.31

Example 4. Suppose that the payoff structure is the same as in Example 2 and that π = 1
4 . For 

values of α ∈ [1, 2] consider the following equilibria: Sender induces posterior beliefs 0 and 
1/α that the state is ω = 1, with probabilities 1 − α

4 and α
4 , respectively. Receiver takes the ac-

tion a = 0 when his posterior belief is 0, and the action a = 1 when his posterior belief is 1/α. 
It is easy to verify that this equilibrium is Sender-optimal, and that as α decreases (but is still 
above 1), the posterior beliefs that support the optimal distribution τ move farther apart. See 
Fig. 5(a). Intuitively, this movement increases the cost of deception and preserves the credibility 
of Sender’s message function. This movement has the effect of “ungarbling” Sender’s commu-
nicated information. This ungarbling allows Receiver to make a more informed choice and so 
increases Receiver’s ex-ante expected payoff. �

The ungarbling of Sender’s communication in Example 4 is in the same spirit of what Lip-
nowski et al. (2022) refer to as “productive mistrust” (but for a different reason). Namely, a 
decrease in Sender’s ability to commit gives rise to a more informative equilibrium, which makes 
Receiver better off.

30 The difference in our results is due to the fact that in Lipnowski et al.’s model, Sender compensates for a weakening 
of (their notion of) credibility by sending a more informative signal. When credibility falls below a certain threshold, this 
is no longer sustainable, leading to a discontinuous jump in Sender’s payoff. By contrast, in our model, Receiver’s tie-
breaking rule directly affects Sender’s gain from deception. When α decreases, Sender’s equilibrium gain from deception 
can be adjusted continuously, which preserves the continuity of Sender’s payoff.
31 Example 4 depicts a family of Sender-optimal equilibria (one for each value of α ∈ [1, 2]) in which the induced 
posterior beliefs are 0 and 1/α. These are not the only Sender-optimal equilibria for the given payoff structure. Indeed, 
Example 2 depicts another family of Sender-optimal equilibria in which the induced posterior beliefs are 0 and 1/2 for 
these values of α. Notice however that for any such value of α, the former equilibrium Pareto dominates the latter because 
it is strictly better for Receiver, and provides the same expected payoff to Sender.
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Fig. 5. Effects of changing α: (a) ungarbling; (b) garbling.

The other way in which Sender can respond to a decrease in the value of α is by decreasing 
the gain from deception. Sometimes, the only way to achieve this is by additional garbling of 
Sender’s messages that moves the means of the induced posteriors closer together. Whether or 
not garbling or ungarbling is better for Sender depends on the specific context. The next propo-
sition describes a sufficient condition that ensures that Sender responds to a lower value of α by 
garbling her message to Receiver.

Proposition 4. Suppose that the state space � is binary, Receiver has a unique best response 
for every belief, and Sender’s indirect payoff ûS is strictly convex.32 If α′ > α, then Sender’s 
optimal distribution of posterior beliefs under α is a garbling of the optimal distribution under 
α′. Consequently, lower deception costs are weakly harmful for both Sender and Receiver.

Fig. 5(b) depicts the case of a convex indirect payoff function ûS and illustrates that a lower 
α results in a distribution τ that is supported on posterior beliefs that are closer together.

Broadly speaking, a lower cost of deception implies that it is more difficult for Sender to 
commit and so is accompanied by a higher level of mistrust. To appreciate the effect of mistrust 
it is useful to observe that Sender faces a tension between his incentive to reveal and conceal 
information to Receiver. Receiver always prefers all information to be revealed. Example 4 de-
picts a situation where Sender’s and Receiver’s interests are sufficiently opposed for Receiver to 
benefit from Sender’s difficulty to commit. Proposition 4 depicts a situation where Sender’s and 
Receiver’s interests are sufficiently aligned for both Sender and Receiver to suffer from Sender’s 
difficulty to commit. In the former case, Sender does not disclose all the available information 
and, in order to preserve her credibility, she discloses more information; in the latter case, Sender 
prefers to fully disclose all the available information and, in order to preserve her credibility, she 
has to disclose less than she would want to if she was trusted by Receiver. Notice however that 
in the two extreme cases in which Sender’s and Receiver’s interests are perfectly aligned and 

32 These conditions imply that ûS is a strictly convex function.
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diametrically opposed with respect to the revelation of information, a change in the value of α
makes no difference. In the case of opposed interests, silence on Sender’s part is always credible 
and optimal. And, when Sender and Receiver have perfectly aligned interests, Sender would not 
want to mislead Receiver anyway.

5. Discussion

5.1. Tie-breaking by receiver

Our focus in this paper is on Sender’s (ex-ante) optimal equilibrium. It is noteworthy that 
in order to support this equilibrium, Receiver may sometimes have to break ties in a way that 
“helps” Sender to sustain her credibility, but is suboptimal for Sender ex-post. This is illustrated 
in Example 2, where for values of π < 1

2 and α < 1, when his posterior belief on ω = 1 is 1
2 , Re-

ceiver randomizes between the two actions in a way that allows Sender to credibly communicate 
information. This is sub-optimal for Sender ex-post because Sender prefers action a = 1 to a = 0. 
Furthermore, in the Sender-optimal equilibrium, Receiver may need to randomize differently for 
different posterior beliefs.

The fact that Receiver’s action is not optimal for Sender ex-post, may open the door for Sender 
to ask an indifferent Receiver to change his action. This raises the question of what would be the 
effect on equilibrium if, when indifferent, Receiver always chose the action that is optimal for 
Sender ex-post.

Analysis of this case reveals two notable differences from the analysis so far. First, Sender’s 
value in this case may be discontinuous in α. For instance, in the setup of Example 2, suppose 
that the prior belief is π = 1

4 and that Receiver always chooses the action a = 1 when his pos-
terior belief is 1

2 . Then, Sender’s value is discontinuous in α at α = 1. Second, in some settings 
the Sender’s optimal value may be approximated arbitrarily closely, but not exactly achieved.33

These two observations would hold for any other tie-breaking rule in which Receiver randomizes 
with probabilities that are independent of the value of α.

5.2. An upper bound on the number of messages

How many messages does Sender need to employ in equilibrium? Suppose that the number 
of states in � is finite. Previous work (see, e.g., Le Treust and Tomala, 2019, Doval and Skreta, 
2018, and Salamanca, 2021) has shown that, in general, the number of messages optimally em-
ployed by the sender in constrained communication problems is possibly larger than the number 
of states and is increasing in the number of constraints. In our setting, the number of constraints 
is endogenous: if the number of messages sent by Sender is K , then the number of (credibility) 
constraints is K(K − 1).

Hence, it is not a priori clear what is the number of messages that are required to support a 
Sender-optimal equilibrium. On the one hand, employing a small number of messages decreases 
the number of credibility constraints. On the other hand, it may be the case that the way to 
achieve the Sender-optimal payoff is to employ a large number of messages such that the gain 
from deviating from one message to another is small.

33 For instance, suppose that in Example 2 Receiver has an additional action a = 2 with a payoff −|0.5 − ω| − 0.5 that 
gives Sender a payoff of 2. Receiver’s action in this case is identical to that in Example 2, except that when his belief that 
ω = 1 is 0.5 he chooses the action a = 2. In this case, for α = 2 Sender’s value can be approximated but not achieved.
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The next proposition shows that no loss of optimality is implied by restricting attention to 
equilibria that employ no more messages than the number of states |�|.34

Proposition 5. For any equilibrium that employs more than |�| messages, there exists an equi-
librium that generates a weakly higher ex-ante expected payoff to Sender and employs no more 
than |�| messages.

The proof of the proposition starts with the well-known observation that, by Carathéodor-
y’s theorem (Rockafellar, 1997), for any message function there exists another (possibly non-
credible) message function that generates an identical ex-ante expected payoff with no more 
than |�| + 1 messages.35 The challenge is to show that given a credible message function that 
employs more messages, it is possible to reduce the number of messages in such a way that pre-
serves credibility. To prove this, we show that in the process of reducing the number of messages, 
it is never the case that a message that was not sent in state ω under the original message function 
is sent in ω under the message function with the smaller number of messages. Finally, we rely on 
the observation that the expected payoff that is generated by an equilibrium that employs |�| + 1
messages can be written as an average of the expected payoffs generated by two equilibria that 
each employs no more than |�| messages.

We thus obtain,

Corollary 2. There exists a Sender-optimal equilibrium that employs no more than |�| messages.

6. Conclusion

Credible communication establishes trust, which is crucial for social interaction and economic 
activity. In this paper we propose a theoretical foundation for understanding the link between 
deception and credible communication. We introduce the possibility of costly deception into 
communication games. The novelty in our approach is that deception costs depend on the play-
ers’ beliefs and are therefore endogenous. We show how costly deception affects Sender’s ability 
to commit to her strategy in two classical environments. We illustrate how imperfect commitment 
is mitigated by the fact that deception is costly. The model is tractable and can be applied to many 
economic environments. These environments can be either ones in which the informed party in-
curs a direct cost for being dishonest (e.g., because of ethical concerns, as in a doctor-patient or 
familial relationships) or ones in which the cost is indirect, and is due to reputational concerns 
in a reduced form of a dynamic interaction model (e.g., as in the case of central bankers, politi-
cians, and the media). Pursuing these directions for future research would hopefully enhance the 
understanding of the determinants of credible communication and its effect on social trust.

Data availability

No data was used for the research described in the article.

34 Bester and Strausz (2001) and Heumann (2020) obtain a similar result for the case with no commitment. In our 
model, this is the case of α = 0.
35 The use of Carathéodory’s theorem in such problems is standard (see, e.g., Bester and Strausz, 2001, and Kamenica 
and Gentzkow, 2011). In our case, the credibility constraint implies that a subtler argument is required.
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Appendix A. Proofs

A.1. Proof of Lemma 1

Suppose that α < 2b. Fix a credible partition. Recall that Receiver’s optimal response to any 
message m is given by μm. For any two messages m and m′ such that μm′ > μm, condition (4)
can be rewritten as:

μm + μm′

2
− ω ≥ b − α

2
(8)

for all ω ∈ m. Suppose that there are N or more messages. There exist two messages m and 
m′ such that μm′ − μm < 1

N
. It follows that when applied to messages m and m′, the left-hand 

side of (8) is smaller than μm − ω + 1
2N

. There exists a state ω ∈ m that is such that ω ≥ μm. 
Therefore, for N > 1

2b−α
inequality (8) is violated. It follows that the number of messages is no 

larger than 1
2b−α

.
Suppose now that α ≥ 2b. If Sender reveals the state then each message m = {ωm} is a sin-

gleton state and μm = ωm. Inspection of the constraint (4) reveals that it is satisfied. Moreover, 
since the variance of each message is zero, the objective function given by Equation (3) is also 
equal to zero, which is the highest possible value it can attain.

A.2. Proof of Lemma 2

Suppose that mk and mk+1 are two adjacent convex messages. Convexity implies that μk =
mk+mk

2 and μk+1 = mk+1+mk+1
2 . The incentive constraint ICup(k) is then given by:

mk + mk

2
+ mk+1 + mk+1

2
− 2mk ≥ 2b − α.

Convexity also implies that mk −mk = |mk| and mk+1 −mk+1 = |mk+1|. Since the messages are 
adjacent, it follows that mk+1 = mk . We can therefore equivalently write ICup(k) as follows:

|mk+1| − |mk| ≥ 4b − 2α. (9)

Equation (9) is a necessary and sufficient condition for ICup(k) when messages are convex. If, 
in addition, ICup(k) is binding then Equation (9) holds in equality.

Set x = |m1| > 0. Then, the fact that the messages are tightly packed implies that |m2| =
x + 4b − 2α, |m3| = x + 8b − 4α, . . ., |mk| = x + (k − 1)(4b − 2α), and so on. Thus,

|m1| + · · · + |mk| = k(k − 1) (2b − α) + kx. (10)

Since x can be set arbitrarily small, the maximal number of messages that can be tightly 
packed on the interval [0, l] is given by

I (l) =
⌈√

1

4
+ l

2b − α
− 1

2

⌉
.

A.3. Proof of Proposition 1

Consider a credible partition that does not consist of I (1) tightly packed messages on �. 
Suppose that the number of messages in this partition is J . The algorithm described in the text 
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Fig. 6. Step1, Case I.

“packs message mk” and produces a new partition in which I (lk) messages are tightly packed 
on the interval [0, lk]. We show that in each iteration of the algorithm the value of the objective 
function improves and all ICup constraints are preserved.

Our proof proceeds in two steps. In step 1, we show that performing Part I of the algorithm 
improves the value of the objective function. Furthermore, after Part I is performed all but perhaps 
one of the ICup constraints are satisfied. If this one constraint is indeed violated, we perform a 
modification of the partition after which: (i) all the ICup constraints are satisfied, and (ii) the 
objective function’s value is higher than that of the original partition (before the execution of 
Part I of the algorithm).

In step 2, we show that the partition produced in step 1 is in fact suboptimal relative to a 
partition in which messages are tightly “repacked” in a maximal manner, and in which all ICup 
constraints are satisfied. Steps 1 and 2 can be repeated until the resulting partition is one that 
consists of l(1) tightly packed messages on �.

To conclude the proof, we show that this final partition satisfies all the ICdown constraints, 
and is therefore credible.

Step 1: Fix all ICup constraints and improve the objective function’s value
Part I of the algorithm “convexifies” message mk to the left. The outcome of this process is illus-
trated in Fig. 6(a). We refer to the partition before the convexification as the “original partition” 
and to the partition after the convexification as the “convexified partition.” Since in the convexi-
fied partition the variance of each message mj is weakly less than the variance of mj under the 
original partition, it follows that the convexified partition attains a higher value for the objective 
function (3).

Notice that the convexification (as described in the algorithm in the text) shifts probability 
mass of message mk towards lower states (“to the left”) and shifts probability masses of messages 
mj with j > k towards higher states (“to the right”). Define φj to be the increase in the mean 
of message mj as a consequence of the shift, multiplied by the probability of the message |mj |
(i.e., the increase in the mean of message mj is equal to φj

|mj | ). Define �k to be the decrease in 
the mean of message mk as a consequence of the shift, multiplied by |mk| (i.e., the decrease in 
the mean of message mk is equal to �k|mk | ). By the Law of Iterated Expectation, �k =∑

j>k φj . 
Finally, denote by L the decrease in the value of mk as a consequence of the shift (thus, L is 
equal to the difference between the measures [mk−1, mk] and |mk|). Because the decrease in the 
value of mk is at least as large as the decrease in the mean of message mk, it follows that:

�k

|mk| ≤ L. (11)

In the convexified partition, the constraints ICup(1), . . ., ICup(k − 2) are satisfied because 
the convexification does not affect them. The constraints ICup(k + 1), . . ., ICup(J − 1) are also 
satisfied. To see this, note that credibility of the original partition implies that μj ≤ mj ≤ μj+1 ≤
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mj+1 for all j ≤ J − 1 and therefore mk+1, . . . , mJ are all larger than mk . Hence, the supremum 
of each message mj with j > k is unchanged between the original and the convexified partition, 
i.e., the values of mk+1, . . . , mJ are unaffected by the convexification. Moreover, the values 
of μk+1, . . . , μJ are all weakly greater in the convexified partition relative to the original one. 
Therefore, the fact that ICup(k +1), . . ., ICup(J −1) are satisfied in the original partition implies 
that they are satisfied in the convexified partition as well.

In the convexified partition, the constraint ICup(k) is satisfied with a slack. To see this, notice 
first that the convexification weakly increases μk+1 relative to its value in the original partition. 
Next, note that although the convexification decreases μk by �k|mk | relative to the original partition, 
it also decreases mk by L. By (11) it follows that the sum μk + μk+1 decreases by no more than 
�k|mk | while mk decreases by at least �k|mk | . Thus, the fact that ICup(k) is satisfied in the original 

partition implies that it is satisfied also in the convexified partition. In fact, the convexification 
creates a slack of at least �k

2|mk | in the ICup(k) constraint. We make use of this observation below.
If ICup(k − 1) is satisfied in the convexified partition, then all ICup constraints are satisfied. 

In this case, jump directly to step 2 below. Otherwise, we distinguish between two cases.

Case I. Suppose that |mk−1| ≤ 2�k|mk | . Merge message mk−1 and message mk (which is now 
a convex message) into a new message called mnew

k with mean μnew
k . For ease of notation 

we relabel all the other messages from mj as mnew
j . We refer to the resulting partition as the 

“merged partition.” This partition, which is illustrated in Fig. 6(b), is composed of the messages 
mnew

1 , . . . , mnew
k−2, m

new
k , mnew

k+1, . . . , m
new
J . Notice that:

μnew
k = μk − �k

|mk| − |mk−1|
2

(12)

μnew
k = μk−1 + |mk|

2
(13)

μnew
j = μj + φj∣∣mj

∣∣ for all j ≥ k + 1 (14)

μnew
j = μj for all j ≤ k − 2 (15)

mnew
k = mk − L, (16)

where μj is the mean of message mj in the original partition, for all j . To see why Equation (12)
holds, notice that μnew

k is equal to the original value of μk , minus �k|mk | (due to the convexification 

of mk), minus |mk−1|
2 (due to the merging of mk with mk−1). Equation (13) holds because the 

mean of the merged message mnew
k is larger than that of the original mk−1 by |mk |

2 . Equations 
(14), (15), and (16) are all direct implications of the convexification of mk.

In the merged partition, all the ICup constraints are satisfied:

1. ICup((k − 2)new) is satisfied because μnew
k > μk−1, whereas μnew

k−2 = μk−2 and mnew
k−2 =

mk−2. Therefore, the fact that ICup(k − 2) was satisfied in the original partition, i.e. 
μk−2+μk−1

2 − mk−2 ≥ b − α
2 , implies that 

μnew
k−2+μnew

k

2 − mnew
k−2 ≥ b − α

2 .

2. ICup(knew) is satisfied because, by Equation (12) and since |mk−1| ≤ 2�k|mk | , we have that 

μnew
k ≥ μk − 2�k|mk | . Thus, the facts that ICup(k) was satisfied in the original partition, i.e., 

μk+μk+1
2 − mk ≥ b − α

2 , along with Equations (11), (14), and (16), imply that 
μnew

k +μnew
k+1

2 −
mnew ≥ b − α .
k 2
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3. All the other ICup constraints are unaffected by the merge. The fact that they are satisfied in 
the convexified partition implies that they are satisfied in the merged partition.

We now show that the merged partition yields a higher value of the objective function (3)
compared to the original partition. Algebraic manipulation shows that the objective function (3)
is equal to the weighted sum of square means of the partition elements

J∑
j=1

|mj |
(
μj

)2 (17)

up to a constant. We therefore have to show that:∑
j≤k−2

|mj |(μnew
j )2 + |mnew

k | (μnew
k

)2 +
∑

j≥k+1

|mj |(μnew
j )2

≥
∑

j≤k−2

|mj |μ2
j + |mk−1|μ2

k−1 + |mk|μ2
k +

∑
j≥k+1

|mj |μ2
j

where the left-hand side of the inequality is the value of (17) computed for the merged partition, 
and the right-hand side is the value of (17) computed for the original partition. Using Equations 
(14) and (15) above, we rewrite the inequality as follows:

2
∑

j≥k+1

μjφj +
∑

j≥k+1

|mj |
(

φj∣∣mj

∣∣
)2

≥ |mk−1|μ2
k−1 + |mk|μ2

k − |mnew
k | (μnew

k

)2 .

Since 
∑

j≥k+1 |mj | 
(

φi∣∣mj

∣∣
)2 ≥ 0 and μj > μk+1 for any j > k + 1, it suffices to show that:

2�kμk+1 ≥ |mk−1|μ2
k−1 + |mk|μ2

k − |mnew
k | (μnew

k

)2 .

Substituting |mnew
k | = |mk| + |mk−1| and rearranging yields:

2�kμk+1 ≥ −|mk−1| (μnew
k − μk−1)(μk−1 + μnew

k ) + |mk| (μk − μnew
k )(μk + μnew

k ).

Using Equations (12) and (13), we rewrite the inequality as follows:

2 (μk+1 − μk)�k ≥ 1

2
|mk| |mk−1|

(
�k

|mk| + |mk−1|
2

+ |mk|
2

)
− �k

(
�k

|mk| + |mk−1|
2

)
.

(18)

Finally, we use the fact that ICup(k) is satisfied in the original partition to find a lower bound 
on μk+1 − μk . To do that, we write ICup(k) equivalently as follows:

μk+1 − μk ≥ 2
((

mnew
k − μnew

k

)− (
μk − μnew

k

)+ (
mk − mnew

k

))+ 2
(
b − α

2

)
.

The fact that mnew
k is a convex message with measure |mk−1|+ |mk| implies that mnew

k −μnew
k =

1
2 (|mk−1| + |mk|). By Equations (11), (12), and (16) we have that

μk+1 − μk ≥ |mk| + 2
(
b − α

2

)
. (19)

By plugging inequality (19) into inequality (18) and simplifying we only need to show that:

|mk|2 |mk−1|2 + |mk|3 |mk−1| − 8�k |mk|2 − 4�2
k − 16�k|mk|

(
b − α)≤ 0. (20)
2
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Fig. 7. Step 1, Case II.

Finally, to see why this last inequality is satisfied, notice that the left-hand side of the in-
equality is negative when |mk−1| = 0. A simple computation shows that it is negative also for 
|mk−1| = 2�k|mk | . Because the left-hand side of the inequality is convex in |mk−1|, it is negative for 

any |mk−1| ∈
[
0,

2�k|mk |
]
.

Case II. Suppose that |mk−1| >
2�k|mk | . Find the index 0 ≤ j < k − 1 for which 

∣∣mj

∣∣ < 2�k|mk | ≤∣∣mj+1
∣∣. For ease of notation assume that m0 = ∅ and |m0| = 0. Repartition the union of the two 

messages mj ∪ mj+1 into two new messages: an interval mnew
j =

[
mj−1,mj+1 − 2�k|mk |

]
with 

measure |mnew
j | = ∣∣mj

∣∣+ ∣∣mj+1
∣∣− 2�k|mk | and an interval mnew

j =
[
mj+1 − 2�k|mk | ,mj+1

]
with mea-

sure |mnew
j+1| = 2�k|mk | . Relabel all the other messages from mj as mnew

j , as illustrated in Fig. 7(b). 
This modified partition weakly improves the value of the objective function, compared to the 
original partition, because: (i) the convexification of mk weakly decreases the variance of all 
messages, and (ii) the repartitioning of mj ∪ mj+1 into mnew

j and mnew
j+1 makes the two mes-

sages “more equal” in their measures compared to mj and mj+1 in the original partition, and so 
decreases the weighted variance further.

After repartitioning, the constraints ICup(jnew) and ICup((k − 1)new) are perhaps violated. 
To fix this, we eliminate message mnew

j+1 whose measure is exactly equal to 2�k|mk | , as follows: we 

“shift” to the left messages mnew
j+2, . . . , m

new
k−1 by length 2�k|mk | , and add 2�k|mk | to message mnew

k from 

the left, as illustrated in Fig. 7(c).36

After this modification, all the ICup constraints are satisfied:

1. The constraint ICup((j − 1)new) is satisfied because μnew
j ≥ μj , whereas μnew

j−1 = μj−1 and 
mnew

j−1 = mj−1. Thus, the fact that ICup(j − 1) is satisfied in the original partition implies 
that ICup((j − 1)new) is satisfied in the modified partition.

2. The constraint ICup(jnew) is satisfied. To see this note first that, by construction, |mnew
j | <∣∣mj+1

∣∣ and |mj+2| = |mnew
j+2|. Next, notice that credibility of the original partition, and the 

fact that mj+1 and mj+2 are two convex and adjacent messages, imply, by Equation (9), that ∣∣mj+1
∣∣ ≤ ∣∣mj+2

∣∣− 4 
(
b − α

2

)
. Therefore, 

∣∣∣mnew
j

∣∣∣ ≤ ∣∣∣mnew
j+2

∣∣∣− 4 
(
b − α

2

)
, which guarantees 

by Equation (9) that ICup(jnew) is satisfied.

36 We say that a convex message (interval) m is shifted to the left by x if mnew := m − x and mnew := m − x where 
mnew denotes message m after the shift.
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3. The constraint ICup
(
(k − 1)new

)
is satisfied. To see this, note that μnew

k = μk − �k|mk | − 1
2 · 2�k|mk |

(the convexification of mk to the left decreases μk by �k|mk | , and the expansion from the 

left further decreases the mean by 1
2 · 2�k|mk | ). Furthermore, μnew

k−1 = μk−1 − 2�k|mk | and mnew
k−1 =

mk−1 − 2�k|mk | due to the shift of messages to the left. Taken together, the last three observations 
imply that since ICup(k − 1) is satisfied in the original partition, then ICup((k − 1)new) is 
satisfied in the merged partition.

4. The constraint ICup(knew) is satisfied. This is because the convexification of mk to the left 
implies that μnew

k+1 ≥ μk+1. Shifting the messages to the left implies that μnew
k = μk − �k|mk | −

1
2 · 2�k|mk | (as explained above) and mnew

k = mk − L. Taken together, these observations and 
equation (11) imply that since ICup(k) was satisfied in the original partition, then ICup(knew)

is satisfied in the new partition.
5. All the other ICup constraints are unaffected by the shift.

The modification improves the value of the objective function compared to the original par-
tition. To see this, recall first that the partition illustrated in Fig. 7(a), which is the outcome of 
convexifying message mk to the left (performed in Part I of the algorithm), improves the value of 
the objective function relative to the original partition. Next, as explained above, the partition de-
picted in Fig. 7(b) improves on the partition depicted in Fig. 7(a). Finally, inspection of Fig. 7(c) 
reveals that it consists of messages with the same lengths as the partition depicted in Fig. 7(b), 
except for message mnew

k in Fig. 7(c), which can be viewed as a union between messages mnew
k

and mnew
j+1 in Fig. 7(b). It is useful to perform this merge in two steps: first, shift message mnew

j+1 to 
the right so that it lies between messages mnew

k−1 and mnew
k in Fig. 7(b); second, merge messages 

mnew
j+1 and mnew

k as illustrated in Fig. 7(c). Because the measure of message mnew
j+1 is exactly 2�k|mk | , 

the argument used in Case I above can be applied here, where mnew
j+1 takes the place of message 

mk−1 in the argument presented in Case I.

Step 2: Show that Part II of the algorithm improves the objective function’s value further
Part I of the algorithm, followed by the modifications described above (according to Case I or 
Case II), produces a partition with convex messages on the interval [0, lk] that satisfies all the 
ICup constraints and improves upon the value of the objective function compared to the original 
partition. The next lemma asserts that executing Part II of the algorithm on this partition preserves 
all the ICup constraints and further improves the value of the objective function.

Lemma A.1. Let P be a partition that satisfies all the ICup constraints with Ĵ convex messages 
on the interval [0, l

Ĵ
]. Then, tightly packing the messages on the interval [0, l

Ĵ
] in a maximal 

manner preserves all the ICup constraints and improves the value of the objective function.

Finally, to complete the proof of the proposition, notice that when I (1) messages are maxi-
mally tightly packed on � then all the ICup constraints are binding (by definition). In this case, 
all the ICdown constraints are satisfied as well. To see this, fix j and notice that

μj−1 + μj

2
− mj = μj−1 + μj

2
− mj−1 = b − α

2
,

where the first equality is by definition and the second equality follows from the fact that the 
ICup(j − 1) constraint is binding. It follows that μj−1+μj

2 − mj ≤ b + α
2 . This completes the 

proof of the proposition. �
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A.4. Proof of Lemma A.1

Suppose that messages 1 through Ĵ are not tightly packed. It follows that the ICup(j)

constraint is not binding for some message mj , j < Ĵ . Redefine messages mj and mj+1 as 
mnew

j = [mj , mj + ε] and mnew
j+1 = [mj+1 + ε, mj+1] for ε > 0 sufficiently small so that the 

ICup(j) constraint is satisfied for the new messages. Observe that this change weakly relaxes all 
the other ICup constraints. This change improves the value of the objective function (3) because 
it makes the probability masses of messages mnew

j and mnew
j+1 closer together relative to messages 

mj and mj+1, which decreases the weighted variance. This implies that tightly packing the Ĵ
messages on the interval [0, l

Ĵ
] satisfies all the ICup constraints (by definition) and improves the 

value of the objective function.
If messages 1 through Ĵ are tightly packed, but not maximally tightly packed, then maximally 

tightly packing messages on the interval [0, l
Ĵ
] satisfy all the ICup constraints and improve the

value of the objective function.
To see this, suppose that P is a partition that satisfies all the ICup constraints with k messages 

that are tightly packed on the interval [0, l], where l ≡ lk . Suppose that it is possible to tightly 
pack k + 1 messages on the interval [0, l]. Let Q be a partition that tightly packs k + 1 messages 
on the interval [0, l] and coincides with P on � \ [0, l]. Denote the messages of P and Q re-
stricted to the interval [0, l] by mP

1 , . . . , mP
k and mQ

1 , . . . , mQ
k+1, respectively. Denote the value 

of the objective function (3) restricted to the interval [0, l] that is induced by these two partitions 
by V (P ) =∑k

i=1 |mP
i |Var(mP

i ) and V (Q) =∑k+1
i=1 |mQ

i |Var(mQ
i ), respectively.

All the ICup(i), 1 ≤ i ≤ k, constraints are binding in both P and Q. By equation (9), which in 
this case holds as an equality, it follows that |mP

i | > |mQ
i+1| > |mQ

1 | for all 1 ≤ i ≤ k. It follows 
that

V (P ) =
k∑

i=1

|mQ
i+1|Var(mP

i ) +
k∑

i=1

(
|mP

i | − |mQ
i+1|

)
Var(mP

i )

≥
k∑

i=1

|mQ
i+1|Var(mQ

i+1) +
k∑

i=1

(
|mP

i | − |mQ
i+1|

)
Var(mQ

1 )

=
k+1∑
i=2

|mQ
i |Var(mQ

i ) +
(

l −
k+1∑
i=2

|mQ
i |
)

Var(mQ
1 )

=V (Q)

where the inequality follows from the fact that the variance of an interval increases in its length.
Finally, the fact that the ICup(k) constraint is satisfied in partition P and the fact that μQ

k+1 >

μP
k imply that the ICup(k + 1) constraint is satisfied in partition Q. Hence, partition Q satisfies 

all the ICup constraints.

A.5. Proof of Proposition 3

Fix a belief p∗ and a cost parameter α∗ ≥ 0. We show that for any α close to α∗, V (p∗, α) is 
close to V (p∗, α∗).
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Fig. 8. Modifications of the induced posterior beliefs.

Denote the set of posterior beliefs induced by a Sender-optimal equilibrium (under the prior 
belief p∗ and the cost parameter α∗) by P and denote the induced distribution over P by τ . For 
any two posterior beliefs p, p′ ∈ P , denote the weighted mean of p and p′ by

μp,p′ ≡ τ(p)

τ(p) + τ(p′)
· μp + τ(p′)

τ (p) + τ(p′)
· μp′ .

Define

g(μp,μp′) ≡ ûS(μp′) − ûS(μp)

μp′ − μp

.

In the definition of g(μp, μp′), as well as below, whenever a specific equilibrium is consid-
ered, ûS(μp) is Sender’s payoff under posterior belief p, under this equilibrium. The value of 
g(μp, μp′) can be interpreted as the slope of the line that connects the point (μp, ûS(μp)) with 
the point (μp′, ûS(μp′)) on the mean/payoff plane. In Fig. 8(a) this is the slope of the dashed 
line. Notice that, given three posterior beliefs p, p′, and p′′ that are such that μp < μp′ <

μp′′ , if g(μp, μp′) = g(μp′ , μp′′) = α∗ then g(μp, μp′′) = α∗. In this case, the three points 
(μp, ûS(μp)), (μp′ , ûS(μp′)), and (μp′′, ûS(μp′′)) are all on the same line in the mean/payoff 
plane.

Credibility of the optimal message function implies that |g(μp, μp′)| ≤ α∗ for any pair of 
posterior beliefs p, p′ ∈ P . If the inequality is strict for all such pairs (i.e., the credibility con-
straint is not binding), then clearly the same value of V can be achieved by employing the same 
distribution of posteriors τ over the set of posterior beliefs P for any α that is sufficiently close 
to α∗.

We therefore assume that there is at least one pair of posterior beliefs p, p′ ∈ P for which 
g(μp, μp′) = α∗ (the case of −g(μp, μp′) = α∗ is analogous and is therefore omitted). The next 
two lemmas are useful for the analysis that follows.

Lemma A.2. Let p, p′ ∈ P be such that μp < μp′ . For any two posterior means μx, μy such 
that μp ≤ μx < μp,p′ < μy ≤ μp′ there exists a set of posterior beliefs P̂ = P \ {p, p′} ∪ {x, y}, 
where x and y are posterior beliefs that induce the means μx and μy , respectively, and a Bayes’ 
plausible distribution τ̂ over P̂ such that

τ̂ (x) = (τ (p) + τ(p′)) · μy − μp,p′

μy − μx

τ̂ (y) = (τ (p) + τ(p′)) · μp,p′ − μx
μy − μx
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and τ̂ = τ otherwise. We refer to the substitution of p, p′ by x, y as the replacement of p and p′
by x and y. Furthermore, if g(μp, μx) = g(μx, μy) = g(μy, μp′), then the value of V induced 
by τ is the same as the value of V induced by τ̂ .37

Lemma A.3. Suppose that p, p′, p′′ ∈ P are three posterior beliefs with means μp < μp′ < μp′′
such that g(μp, μp′) = g(μp′, μp′′) = α∗. Then, it is possible to eliminate either p, or p′′, or 
both, from P , and adjust the distribution over posteriors τ , in a way that preserves the value of 
V and preserves credibility.

Fix a pair of posterior beliefs p, p′ ∈ P for which g(μp, μp′) = α∗. By Lemma A.3, no loss 
of generality is implied by assuming that g(μp, μy) < α∗ for all y ∈ P \ {p, p′} (as otherwise at 
least one posterior belief can be eliminated from P ). Credibility then implies that μy /∈ (μp, μp′)
for all y ∈ P \ {p, p′}.38

For ease of exposition, we start with the case in which ûS is everywhere single-valued. After 
presenting the analysis for this case, we explain how it can be extended to the general case.

Suppose that ûS is single-valued. We distinguish between three cases:

(i) Suppose that g(μp, μp,p′) = α∗. In this case, the point (μp,p′, ûS(μp,p′)) lies on the line 
that connects the points (μp, ûS(μp)) and (μp′, ûS(μp′)) in the mean/payoff plane, as il-
lustrated in Fig. 8(a).
Modify the message function such that in any state in which the messages that induce p
and p′ were sent, the message function now sends only one message. Denote the posterior 
belief induced by this new message by p′′ and notice that the mean of p′′ is μp′′ = μp,p′ . 
The fact that g(μp, μp,p′) = g(μp,p′, μp′) = α∗ implies that the value of V is unaffected 
by the modification (see also the proof of Lemma A.3).
After the modification, we have that |g(μp′′ , μy)| < α∗ for all y ∈ P \ {p, p′}. Intu-
itively, this is because for any μy /∈ (μp, μp′), the slope of the line that connects the point 
(μy, ûS(μy)) with the point (μp′′, ûS(μp′′)) in the mean/payoff plane is between the slopes 
of: (A) the line that connects (μy, ûS(μy)) with (μp, ûS(μp)) and (B) the line that connects 
(μy, ûS(μy)) with (μp′, ûS(μp′)). Since, by credibility, both (A) and (B) are smaller than 
α∗ in absolute value, the result follows.
Formally, fix any posterior belief y ∈ P \ {p, p′}. Since g(μp, μp′′) = α∗, we have that

g
(
μy,μp′′

)= u
(
μp′′

)− u
(
μy

)
μp′′ − μy

= u
(
μp

)+ α∗ (μp′′ − μp

)− u
(
μy

)
μp′′ − μy

.

Differentiating g with respect to μp′′ yields:

∂g
(
μy,μp′′

)
∂μp′′

= (
μp − μy

) α∗ − g
(
μy,μp

)
(
μp′′ − μy

)2 . (21)

37 If either ûS (μx) or ûS (μy) is not single-valued, then fix values ûS (μx) and ûS (μy), respectively. If the condition 
g(μp, μx) = g(μx, μy) = g(μy, μp′ ) is satisfied for these values, then the conclusion follows.
38 To see this, suppose by way of contradiction that μy ∈ (μp, μp′ ) and that ûS (μp′ ) > ûS

(
μp

)
(the other case is 

handled similarly). Since g
(
μp,μy

)
< α∗ then ûS (μp′ ) − ûS (μy) > ûS(μp′ ) − ûS

(
μp

)− (μy − μp) · α∗. Using the 
fact that g(μp, μp′ ) = α∗ we have that ûS (μp′ ) − ûS (μy) > (μp′ − μy)α∗, and since μy ∈ (μp, μp′ ) we have that 
g
(
μy,μp′

)
> α∗, contradicting the credibility of the message function.
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Recall that g
(
μy,μp

)
< α∗ for all y ∈ P \ {p, p′}. Thus, if μy < μp , the right-hand side 

of Equation (21) is positive and so g
(
μy,μp

)
< g

(
μy,μp′′

)
< g(μy, μp′). And, if μy >

μp′ , the right-hand side of Equation (21) is negative and so g
(
μy,μp

)
> g

(
μy,μp′′

)
>

g(μy, μp′). It follows that |g (μy,μp′′
) | < max[|g (μy,μp

) |, |g(μy, μp′)|] ≤ α∗ for all 
μy /∈ [μp, μp′ ].
Thus, the modified message function eliminates a pair of posterior beliefs for which the 
credibility constraint was binding, and replaces it with one posterior belief for which credi-
bility is not binding for any other element in P .

(ii) Suppose that g(μp, μp,p′) < α∗. In this case, the point (μp,p′, ûS(μp,p′)) is below the line 
that connects the points (μp, û(μp)) and (μp′, û(μp′)) in the mean/payoff plane, as illus-
trated in Fig. 8b).
Let z1 ∈ [μp, μp′ ] be the lowest mean that is greater than μp,p′ for which g(μp, z1) =
α∗, i.e., z1 = min[x|x > μp,p′ and g(μp, x) = α∗]. Note that z1 necessarily exists, by the 
continuity of g and the intermediate value theorem (it could be the case that z1 = μp′ ).
Replace the posteriors p and p′ by the posteriors p and p′′, where p′′ is a posterior with 
mean z1, in the manner described in Lemma A.2 and illustrated in Fig. 8(b). This mod-
ification does not change the value of the function V because g(μp, μp′) = g(μp, z1). 
Credibility of the original message function, and the fact that z1 ∈ (μp, μp′), imply that 
|g(μy, μp′′)| < α∗ for all y ∈ P \ {p} (the analysis is identical to the one presented in case 
(i) above). Therefore the modified message function satisfies credibility.
Continuity of g implies that, for any ε > 0, there exists a δ̂ > 0, such that if 0 < δ < δ̂ then 
there exists x ∈ [z1 − ε, z1] such that |g(μy, x)| ≤ α∗ − δ for all y ∈ P \ {p′}. Thus, when 
α is close to α∗, we can modify the message function (by replacing the posterior beliefs p
and p′′ by p and p′′′, where p′′′ is a posterior belief with mean x, in the manner described 
in Lemma A.2 and illustrated in Fig. 8b), such that credibility is satisfied and the value of 
V is only slightly affected.39

(iii) Suppose that g(μp, μp,p′) > α∗. In this case, the point (μp,p′, ûS(μp,p′)) is above the line 
that connects the points (μp, û(μp)) and (μp′, û(μp′)) in the mean/payoff plane, as illus-
trated in Fig. 8c).
Let z2 ∈ [μp, μp′ ] be the highest value that is smaller than μp,p′ for which g(μp, z2) = α∗, 
i.e. z2 = max[x|x < μp,p′ and g(μp, x) = α∗]. For ease of notation we define g(μp, μp) =
α∗ and allow z2 to be equal to μp , which is the case that is illustrated in Fig. 8(c). As in 
case (ii), z2 necessarily exists by the continuity of g.
If z2 �= μp , replace the posteriors p and p′ by the posteriors p′′ and p′, where p′′ is a 
posterior with mean z2, in the manner described in Lemma A.2. As in case (ii) above, this 
modification preserves the value of V and the credibility of the message function.
Continuity of g implies that, for any ε > 0, there exists a δ̂ > 0, such that if 0 < δ < δ̂ then 
there exists x ∈ [z2, z2 + ε] such that |g(μy, x)| ≤ α∗ − δ for all y ∈ P \ {p′}. As in case 
(ii) above, when α is close to α∗, we can modify the message function (by replacing the 
posterior beliefs p′ and p′′ by p′ and p′′′, where p′′′ is a posterior belief with mean x, in the 
manner described in Lemma A.2 and illustrated in Fig. 8c), such that credibility is satisfied 
and the value of V is only slightly affected.

39 This is because ûS is a continuous function and because the distribution of posterior beliefs, τ̂ , that is described in 
the statement of Lemma A.2, is only slightly affected by the modification.
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Thus, for any pair of posterior beliefs p, p′ ∈ P for which credibility is binding in the original 
message function, and for any small change in α∗, it is either the case that this pair can be 
eliminated without affecting the value of V (case i), or there exists a modification of the message 
function that restores credibility while only slightly affecting the value of V (cases (ii) and (iii)). 
Therefore, if α is close to α∗ then the value V (p∗, α) is close to V (p∗, α∗).

To complete the proof, suppose now that ûS is not everywhere single-valued. The analysis is 
similar to the analysis above up to a few technical adaptations described below.

Denote g(μp, x) = g(μp, min{ûS(x)}) and g(μp, x) = g(μp, max{ûS(x)}). Distinguish be-
tween the following three cases:

(i) Suppose that g(μp, μp,p′) < α∗ < g(μp, μp,p′). In this case, perform the change described 
in case (i) above, with the additional assumption that if Receiver’s beliefs correspond to 
μp,p′ then he randomizes in such a way that g(μp, μp,p′) = α∗. The rest of the argument 
carries over as in case (i).

(ii) Suppose that g(μp, μp,p′) < α∗. There exists a point z1 ∈ [μp,p′ , μp′ ] such that g(μp, z1) ≤
α∗ ≤ g(μp, z1). Pick a payoff for Sender from ûS(z1) such that g(μp, z1) = α∗ where g is 
computed according to this payoff at z1. The argument proceeds in the same way as in case 
(ii) except that we allow ε to be zero so that instead of a new posterior belief p′′′ we may 
adjust the value of ûS(z1) downwards.

(iii) Suppose that g(μp, μp,p′) > α∗. There exists a point z2 ∈ [μp, μp,p′ ] such that g(μp, z2) ≤
α∗ ≤ g(μp, z2). Pick a payoff for Sender from ûS(z2) such that g(μp, z2) = α∗ where g is 
computed according to this payoff at z2. The argument proceeds in the same way as in case 
(iii) except that we allow ε to be zero so that instead of a new posterior belief p′′′ we adjust 
the value of ûS(z2) upwards.

A.6. Proof of Lemma A.2

Observe that this replacement of posteriors is performed in a way that contracts the distribu-
tion of posterior means and preserves both the conditional mean μp,p′ and the mean μp∗ . This 
implies that τ̂ second-order-stochastically-dominates τ . This ensures that the distribution τ̂ is 
Bayes plausible.

Suppose now that g
(
μp,μx

)= g
(
μx,μy

)= g
(
μy,μp′

)
. Sender’s value (V ) from employ-

ing the modified message function is given by:∑
q∈P \{p,p′}∪{x,y}

τ̂ (q) · ûS (q) =
∑

q∈P \{p,p′}
τ̂ (q) ûS (q) + τ̂ (x) · ûS (μx) + τ̂ (y) · ûS(μy).

(22)

By construction, we have that τ̂ (x) = μy−μp

μy−μx
· τ (p) − μp′−μy

μy−μx
· τ
(
p′). Since g

(
μp,μx

) =
g
(
μx,μy

)= g
(
μy,μp′

)
, it follows that

τ̂ (x) = ûS(μy) − ûS(μp)

ûS(μy) − ûS(μx)
· τ (p) − ûS(μp′) − ûS(μy)

ûS(μy) − ûS(μx)
· τ (p′) .

By plugging this expression of τ̂ (x), and τ̂ (y) = τ (p) + τ
(
p′)− τ̂ (x), into the right-hand side 

of Equation (22) we obtain
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∑
q∈P \{p,p′}

τ̂ (q) ûS (q) + τ (p) · ûS

(
μp

)+ τ
(
p′) · ûS(μp′) =

∑
q∈P

τ̂ (q) ûS (q) ,

which is Sender’s value under the original message function.

A.7. Proof of Lemma A.3

Suppose that a credible message function induces the three posterior beliefs p, p′, p′′ as de-
scribed in the statement of the lemma.

If μp,p′′ = μp′ , modify the message function so that in any state in which the messages that 
induced p and p′′ are sent, the modified message function sends the message that induced p′
instead. Thus, the mean of the posterior belief induced by this message remains μp,p′′ . The fact 
that g(μp, μp′) = g(μp′, μp′′) implies that the value of V remains unchanged.40

If μp,p′′ < μp′ , replace the posteriors p and p′′ in P by p and p′, in the manner described in 
Lemma A.2. If μp,p′′ > μp′ , replace the posteriors p and p′′ in P by p′ and p′′ in the manner 
described in Lemma A.2. These modifications do not change the value of the function V .

Finally, note that in all the cases described above, the modified message function does not in-
duce a posterior belief that was not induced by the original message function. Thus, the credibility 
constraints in Sender’s problem (SP1) are only relaxed, and the fact that the original message 
function was credible implies that the modified one is also credible.

A.8. Proof of Proposition 4

We prove the proposition for the case in which ûS is increasing and convex. The proof for the 
case in which ûS is decreasing, or decreasing and then increasing, is analogous.

Suppose that the state space is binary, i.e., � = {l, h} for some two numbers l, h ∈ R with 
l < h. A belief over � can be described by the probability p ∈ [0,1] that the state is h. The prior 
belief is thus given by π ∈ (0,1). The mean of belief p is μp = l + (h − l)p. In what follows 
we normalize the parameters h and l to be 1 and 0, respectively, and therefore μp = p.

According to Corollary 2 the optimal message function induces either one posterior belief that 
is equal to the prior π , or two credible posterior beliefs pL < π < pH , whichever generates a 
higher expected payoff to Sender. In the former case, the ex-ante expected payoff to Sender is 
ûS(π). In the latter case, the ex-ante expected payoff to Sender is pH · ûS(pH ) + pL · ûS(pL). 
Credibility requires that ûS(pH )−ûS (pL)

pH −pL
≤ α.

We distinguish between the following three cases:

(i) If ûS(1) − ûS(0) ≤ α, then the message function that induces a distribution τ over the poste-
rior beliefs p∗

L = 0 (realized with probability 1 − π ) and p∗
H = 1 (realized with probability 

π ) is credible under α. Such a message function is optimal for Sender because it concavifies 
ûS on the interval [0, 1].

40 To see this, note first that τ (p) · ûS (μp) + τ
(
p′) · ûS (μp′ ) = (

τ (p) + τ
(
p′))( τ(p)

τ(p)+τ
(
p′) ûS (μp) +

τ
(
p′)

τ(p)+τ
(
p′) ûS (μp′ )

)
. Next, since μp′ = μp,p′′ and g(μp, μp′ ) = α we have that ûS (μp) = ûS (μp,p′′ ) − (μp,p′′ −

μp)α, and since g(μp′ , μp′′ ) = α we have ûS (μp′′ ) = ûS (μp,p′′ ) +
(
μp′′ − μp,p′′

)
α. By definition of μp,p′′ we then 

obtain τ (p) · ûS (μp) + τ
(
p′) · ûS (μp′ ) = (τ (p) + τ

(
p′)) · ûS (μp,p′′ ).
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(ii) If ûS (π)−ûS (0)
π

< α < ûS(1) − ûS(0), then the two optimally induced beliefs under α are 

p∗
L = 0 and p∗

H that is such that 
ûS (p∗

H )−ûS (0)

p∗
H

= α. To see this, note first that for any different 
pair of posterior beliefs pL < π < pH , decreasing pL relaxes the credibility constraint and 
improves the ex-ante expected payoff to Sender. Then, it is possible to increase pH up to p∗

H , 

where the credibility constraint is binding, i.e., 
ûS (p∗

H )−ûS (0)

p∗
H

= α, which further increases 
the ex-ante expected payoff to Sender.

(iii) If α ≤ ûS (π)−ûS (0)
π

, then the unique feasible policy induces just one posterior belief, which 

is equal to the prior π . This is because the convexity of ûS implies that ûS (pH )−ûS (pL)
pH −pL

is 

increasing in pL and in pH and therefore ûS(pH )−ûS (pL)
pH −pL

≥ α for any pL ≤ π and pH ≥ π . 
Thus, no message function can induce two (Bayes plausible) posterior beliefs in a credible 
way.

Notice that decreasing the value of α does not affect Sender’s optimal distribution over pos-
teriors so long as α remains as in case (i) or (iii). As the value of α changes from case (i) to 
(ii), or as α decreases in case (ii), Sender’s optimal distribution τ becomes more garbled. This is 
because the convexity of û implies that ûS (pH )−ûS (0)

pH
increases in pH . Thus, a lower value of α

implies a lower value of p∗
H (i.e., messages are less informative with respect to the state).

A.9. Proof of Proposition 5

We first show that for any equilibrium there exists another equilibrium that generates an ex-
ante identical payoff to Sender and that employs no more than |� + 1| messages. Suppose that 
an equilibrium message function σ sends more than |�| + 1 messages. Every message m ∈ M

that is sent by σ induces a posterior belief (distribution) pσ
m over the states. This belief can 

be represented by a vector in R|�|−1. Sender’s equilibrium material payoff from inducing the 
posterior belief pσ

m is vpσ
m

. Thus, each message m that is sent by σ induces a vector (pσ
m, vpσ

m
) ∈

R|�|.
Denote Sender’s ex-ante expected payoff under σ by US(σ). Then,(

Em

[
pσ

m

]
,Em

[
vpσ

m

])= (π,US(σ )) ∈R|�|

where Em

[
pσ

m

] = π ∈ R|�|−1 follows from Bayes plausibility: the mean of the induced pos-
terior beliefs is equal to the prior belief, and Em

[
vpσ

m

] = US(σ) ∈ R by definition of US(σ). 
Therefore, the vector (π, US(σ)) ∈ R|�| belongs to the convex hull that is generated by the set 
{(pσ

m, vpσ
m
)}m∈M .

By Carathéodory’s theorem (Rockafellar 1997, Theorem 17.1) it is possible to write the 
vector {(π, US(σ)} as a convex combination of no more than |�| + 1 elements in the set 
{(pσ

m, vpσ
m
)}m∈M .

Suppose that the messages that induce these |�| + 1 beliefs in the original message func-
tion σ are given by m1, . . . , m|�|+1. Consider a message function σ ′ that sends messages 
m′

1, . . . , m
′|�|+1 that induce the same posterior beliefs as those induced by m1, . . . , m|�|+1, 

with the probabilities determined by Carathéodory’s theorem. By construction, pσ ′
m′

j

= pσ
mj

for 

j ∈ {1, · · · , |�| + 1}. Note that the message function σ ′ generates the same ex-ante expected 
payoff to Sender as σ .
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We now show that the message function σ ′ can also be part of an equilibrium. Denote by 
qσ (m,ω) the probability that message m is sent in state ω by message function σ . Observe that:

qσ (mj ,ω) = 0 ⇒ qσ ′
(m′

j ,ω) = 0 ∀j ∈ {1, · · · , |�| + 1},∀ω ∈ �,

because, otherwise, qσ ′
(m′

j , ω) > 0 = qσ (mj , ω) for some j ∈ {1, · · · , |�| + 1} and ω ∈ �. 

Then, pσ ′
m′

j

[ω] > 0 while pσ
mj

[ω] = 0. This is in contradiction to the fact that pσ ′
m′

j

= pσ
mj

for 

j ∈ {1, · · · , |�| + 1}. Thus, every belief that is induced by σ ′ in some state ω was also induced 
by σ in ω. Therefore, the credibility of σ implies the credibility of σ ′.

Thus, we have shown that we may restrict our attention to equilibria that employ no more than 
|�| + 1 messages.

Consider an equilibrium message function σ that employs |�| + 1 messages, that in-
duce posterior beliefs p1, . . . , p|�|+1 with probabilities λ1, . . . , λ|�|+1, respectively, such that ∑|�|+1

i=1 λipi = π . Denote the set of these posterior beliefs by P = {p1, . . . , p|�|+1} and denote 

the ex-ante expected payoff to Sender that is generated by σ by 
∑|�|+1

i=1 λi · vpi
≡ U . We may as-

sume that each λi is positive and that each pi is different from π because otherwise it is possible 
to induce an ex-ante expected payoff that is at least U with no more than |�| messages.

We proceed with the following lemma.

Lemma A.4. Suppose that S = {x1, . . . , xd+2} is a set of d + 2 vectors in Rd . For any vector 
p ∈ Rd in the convex hull generated by S, denoted by co(S), there exist at least two distinct 
subsets S′, S′′ ⊂ S with no more than d + 1 elements each, such that p ∈ co(S′) ∩ co(S′′).

Proof. For any vector x ∈ Rd , denote the vector’s ith coordinate by x[i], and set x̄ ≡ (1
x

) ∈
Rd+1. Define the matrices X = [

x1 x2 · · · xd+2
] ∈ Rd×(d+2) and X = [

x̄1 x̄2 · · · x̄d+2
] ∈

R(d+1)×(d+2). Since p ∈ co(S), there exists a vector λ = (λ[1], . . . , λ[d+2])T ∈ Rd+2 such that ∑d+2
i=1 λ[i] = 1 and Xλ = p.
The vectors x̄1, x̄2, . . . , x̄d+2 are linearly dependent. Hence, there is a vector α = (α[1], . . . ,

α[d+2])T ∈ Rd+2, with coordinates not all equal to zero, such that α ∈ ker
(
X
)
. Since ∑d+2

i=1 α[i] = 0 it follows that α has at least one positive coordinate and at least one negative 
coordinate.

Suppose without loss of generality that the coordinates in α are ordered such that λ[1]
α[1] ≤ · · · ≤

λ[k]
α[k] < 0 < λ[k+1]

α[k+1] ≤ · · · ≤ λ[d+2]
α[d+2] . We can therefore decompose the vector p as follows:

p =
d+2∑
i=1

λ[i]x̄i =
k∑

i=1

λ[i]x̄i + λ[k+1]

α[k+1]

d+2∑
i=k+1

α[i]x̄i +
d+2∑

i=k+2

(
λ[i]

α[i]
− λ[k+1]

α[k+1]

)
α[i]x̄i .

Substituting 
∑d+2

i=k+1 α[i]x̄i = − 
∑k

i=1 α[i]x̄i and rearranging yields

p =
k∑

i=1

(
λ[i]

α[i]
− λ[k+1]

α[k+1]

)
α[i]x̄i +

d+2∑
i=k+2

(
λ[i]

α[i]
− λ[k+1]

α[k+1]

)
α[i]x̄i .

Therefore, the vector β=(β[1], . . . , β[d+2])
T that is defined such that β[i]=

(
λ[i]
α[i]

− λ[k+1]
α[k+1]

)
α[i]

satisfies 
∑d+2

β[i] = 1 and Xβ = p and all its coordinates are nonnegative. A similar argument 
i=1
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shows that the vector γ = (γ[1], . . . , γ[d+2])
T that is defined such that γ[i] =

(
λ[i]
α[i]

− λ[k]
α[k]

)
α[i]

satisfies 
∑d+2

i=1 γ[i] = 1 and Xγ = p and all its coordinates are nonnegative.
Let S′ = {x1, . . . , xk, xk+2, . . . , xd+2} and S′′ = {x1, . . . , xk−1, xk+1, . . . , xd+2}. We have 

therefore shown that p ∈ co(S′) and p ∈ co(S′′). Moreover, notice that λ[i] = νβ[i] + (1 − ν) γ[i]
where ν = 1

1− λk+1
αk+1

αk
λk

. �

By Lemma A.4, given any set of beliefs P = {p1, . . . , p|�|+1} that are each different from π , 
and are induced with positive probabilities λ1, . . . , λ|�|+1, respectively, such that 

∑|�|+1
i=1 λipi =

π , there exist at least two subsets of beliefs P ′, P ′′ ⊂ P with no more than |�| elements each, 
with associated probabilities λ′ and λ′′ that also average the prior belief π . With slight abuse 
of notation we also use λ′ and λ′′ to denote the |�| + 1-dimensional vectors of probabilities 
p1, . . . , p|�|+1 where instead of the probability associated with the belief that is missing from 
the subsets P ′ and P ′′, respectively, we write zero.

Inspection of the proof of Lemma A.4 reveals that the vector λ can be written as a convex 
combination of the vectors λ′ and λ′′. Therefore, the expected payoff U =∑|�|+1

i=1 λi · vpi
can 

be written as a convex combination of the expected payoffs U ′ = ∑|�|+1
i=1 λ′

i · vpi
and U ′′ =∑|�|+1

i=1 λ′′
i · vpi

associated with the two vectors of probabilities λ′ and λ′′. It follows that either 
U ′ or U ′′ is greater than or equal to U .

Finally, the message functions σ ′ and σ ′′ that induce the posterior beliefs in P ′ and P ′′, 
respectively, satisfy credibility because of the same argument used in the first part of the proof. 
Namely,

qσ (mj ,ω) = 0 ⇒ qσ ′
(m′

j ,ω) = 0,pσ ′′
(m′

j ,ω) = 0 ∀j ∈ {1, · · · , |�| + 1},
because, otherwise, qσ ′

(m′
j , ω), qσ ′′

(m′
j , ω) = 0 > 0 = qσ (mj , ω). Thus, it is never the case that 

a message is sent under σ ′ at a state where it was not sent under σ . Therefore, the credibility of 
σ implies the credibility of σ ′ and σ ′′.
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