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How Bayesian Persuasion Can Help Reduce 
Illegal Parking and Other Socially Undesirable Behavior†

By Penélope Hernández and Zvika Neeman*

We consider the question of how best to allocate enforcement 
resources across different locations with the goal of deterring 
unwanted behavior. We rely on “Bayesian persuasion” to improve 
deterrence. We focus on the case where agents care only about the 
expected amount of enforcement resources given messages received. 
Optimization in the space of induced mean posterior beliefs involves 
a partial convexification of the objective function. We describe inter-
pretable conditions under which it is possible to explicitly solve the 
problem with only two messages: “high enforcement” and “enforce-
ment as usual.” We also provide a tight upper bound on the total 
number of messages needed to achieve the optimal solution in the 
general case as well as a general example that attains this bound. 
(JEL D83, K42, R41)

This paper addresses the question of how best to allocate enforcement resources 
across different locations with the goal of deterring unwanted behavior. The 

novelty in our approach is that we employ the techniques of “Bayesian persuasion,” 
namely the use of carefully disseminated communication, in order to maximize 
deterrence. To fix ideas and simplify the presentation, we focus on the problem of 
how to allocate resources in order to reduce the extent of illegal parking. However, 
the same model can also be applied to other types of socially undesirable behavior, 
such as speeding,  free-riding, tax evasion, etc.

The basic idea is the following. Suppose that after a frustrating search for park-
ing, a driver has found an illegal parking spot. She considers whether to park there or 
not. Suppose that the driver would park illegally if she estimates the probability she 
would be sanctioned to be less than  one-third. Suppose also that the number of park-
ing inspectors employed is such that the probability of a sanction is just  one-quarter. 
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This probability is not sufficiently high to deter the driver, so in the absence of any 
other intervention, she would park illegally.

Suppose that the city monitors the locations of its parking inspectors and so can 
inform the driver whether or not she would be sanctioned if she parked illegally 
in the specific location and time she is considering.1 Quick reflection reveals that, 
perhaps  counterintuitively, sharing this location- and  time-specific information with 
the driver would improve deterrence because with probability  one-quarter there is 
indeed a parking inspector nearby, and in this case the driver would be deterred.

The city can do even better by using the following policy. When a parking inspec-
tor is nearby, the city would convey the message that “the likelihood of a sanction is 
high,” and when a parking inspector is not nearby, the city would randomize: with 
probability  two-thirds, it would still convey the message that “the likelihood of a 
sanction is high,” and with probability  one-third, it would convey the message that 
“the likelihood of a sanction is ‘as usual.’” A driver who is informed that the likeli-
hood of a sanction is “as usual” would of course park illegally because she under-
stands that, given the city’s policy, the probability she would be sanctioned is in fact 
equal to zero. But a driver who is informed that the likelihood of a fine is “high” 
would realize that the probability of a sanction conditional on the “high” message 
is exactly  one-third and would be deterred from illegal parking. It can be shown 
that this is the optimal “persuasion policy” for the city in this example; it increases 
the probability of deterrence from zero with no communication to  three-quarters 
( 1/4 + 3/4 ⋅ 2/3 = 3/4 ).

This example relies on two important implicit assumptions. First, it is assumed 
that the city can commit to its messaging strategy and that the driver is aware of it. 
We believe that this is not an unreasonable imposition in this case because if it is 
ever discovered that the city deviated from its policy by sending the high message 
also when it was not supposed to, the city would lose its credibility and with it the 
ability to deter future drivers, which it would not want to do.2

Second, it is assumed that the city faces a single driver in any place and time and 
that it can condition its policy on the driver’s threshold probability of deterrence. 
If instead the city faced a continuum of drivers whose threshold probabilities for 
deterrence were commonly known to be distributed according to some distribution 
function  F , then not informing drivers would deter a fraction  F(μ)  of the drivers, 
where  μ  denotes the expected probability that an inspector is nearby ( 1/4  in the 
example above), because only drivers with thresholds less than  μ  are sufficiently 
deterred from illegal parking.3

An important insight of Kamenica and Gentzkow (2011) is that by using 
 persuasion, the city can induce any two posterior beliefs that an inspector is nearby,   
r L    and   r H   , with probabilities   p L    and   p H   = 1 −  p L   , respectively, provided that  

1 For example, the city can display such location- and  time-specific information on electronic street signs, on its 
website, or in a dedicated mobile app.

2 See Best and Quigley (2020) for a model of persuasion where commitment is justified through a concern for 
future credibility.

3 The model lends itself to two mathematically equivalent interpretations. Under the first interpretation, the city 
faces a single driver whose deterrence threshold (type) is distributed according to  F ; under the second, the city faces 
a continuum of measure one of drivers, whose thresholds are distributed according to  F . The analysis and all the 
results are identical under these two interpretations.
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  r L   ≤ μ≤  r H    and that the expected posterior belief is equal to  μ , or such that  
  p L   ⋅  r L   +  p H   ⋅  r H  = μ  (such beliefs are said to be Bayes plausible). This allows the 
city to deter an expected fraction of   p L   ⋅ F( r L  ) +  p H   ⋅ F( r H  )  of the population of 
drivers. Kamenica and Gentzkow’s second insight is that the policy that maximizes 
expected deterrence consists of finding the optimal pair of induced posterior beliefs. 
And that, for every value of the parameter  μ , this optimal policy achieves a level of 
expected deterrence that is equal to the one achieved by the smallest concave function 
that lies above  F .4 It therefore follows that the optimal choice of induced posterior 
beliefs achieves a level of expected deterrence that is no worse than  F(μ) , and if the 
function  F  is not concave, such a policy is strictly better for the city for at least some 
values of the parameter  μ .

How likely is the function  F  to not be concave? Concavity of  F  is equivalent to a 
decreasing marginal return for enforcement effort. Not much evidence exists on the 
return to enforcement effort. In a famous experiment that was conducted in Kansas 
City in 1974 (Kelling et al. 1974), a doubling of police patrols was shown to have 
virtually no statistically significant effect on street crime.5 Sherman and Weisbrud 
(1995) famously criticized the Kansas City experiment by claiming that Kansas 
City is too large a unit of analysis for a doubling of patrols to produce an effect, or 
for a true reduction in crime to be statistically significant. Sherman and Weisbrud 
repeated the Kansas City experiment in Minneapolis two decades after the Kansas 
City experiment but restricted it to crime “hot spots,” which can be as small as a 
street corner or a city block. They found that a doubling of police patrols in crime 
hot spots produced reductions in total crime that ranged from 6 percent to 13 percent 
(however, “observed disorder” decreased by  one-half). Their findings are consistent 
with the prevailing view that “large increases in dosage may be essential if any 
effect on crime is to be observed” (Sherman and Weisbrud 1995). This suggests that 
assuming that the distribution function  F  is  S-shaped or even convex may certainly 
be a reasonable assumption in many cases. For simplicity, in the analysis below, we 
take this logic a step further and assume that the function  F  is given by a threshold 
function. Namely, we assume that in each time and place a certain, commonly known 
amount of enforcement effort is needed to achieve full deterrence. This assumption 
simplifies the mathematical derivation, but similar qualitative results would obtain 
for any function  F  that is  S-shaped or convex.

We consider a general model in which a principal observes the realized amount 
of enforcement resources available and decides how to allocate them across  N ≥ 1  
different locations. We refer to the realized amount of resources as the state of the 
world. The principal can commit to a policy of sending public messages about the 
amount of realized resources and their allocation. Drivers in each one of the  N  loca-
tions observe these messages and decide whether or not to park illegally.6

4 These two insights were adapted from the work of Aumann and Maschler (1995), who developed them in the 
context of repeated games with incomplete information.

5 This finding had a big effect on the thinking on deterrence. It convinced both academics and the police itself 
that “police presence does not deter” (Sherman and Weisbrud 1995, 626).

6 We assume that the principal cannot send private driver- or  location-dependent messages. This assumption 
simplifies the discussion and is plausible given the applications considered. Because drivers’ decisions are indepen-
dent and impose no externalities on each other, this assumption has no effect on implementable outcomes.
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For simplicity, we assume that drivers in each location care only about the 
expected amount of enforcement resources allocated to their location given the mes-
sage they heard. This implies that the principal also cares only about the mean of the 
posterior beliefs that are induced by its messages.

We generalize the example to any number of locations and any distribution of 
available resources and consider in addition the question of how best to deploy the 
available enforcement resources. The principal’s problem is written as a problem 
of the minimization of social cost subject to a set of constraints that combine both 
the distribution of resources and the probabilities with which different messages are 
sent. It is possible to write the problem, equivalently, as a problem of the maximiza-
tion of expected deterrence subject to the same constraints.

We describe two complementary approaches for addressing this problem. Under 
both approaches, it is useful to identify messages with the subsets of locations on 
which they achieve deterrence. This allows us to easily show that the principal 
cannot benefit from generating endogenous uncertainty to facilitate persuasion. A 
second benefit of this identification that is useful for the first approach is that it 
allows us to replace constraints over the distribution of resources with deterrence 
constraints that require that messages indeed achieve deterrence on the subset of 
locations where they are supposed to do so. We show that no loss of optimality is 
implied by restricting attention to allocations that satisfy a so-called “Optimal Ratio 
Rule.” This rule implies that enforcement resources should be allocated proportion-
ally to the deterrence thresholds in those locations where deterrence is achieved, 
conditional on any message and state of the world. The Optimal Ratio Rule implies 
that the principal’s problem, although nonlinear as stated, can nevertheless be recast 
as a linear programming problem where social cost is minimized subject to the usual 
probability constraints and deterrence constraints.

The second approach is based on the idea that the problem can be divided into 
two  subproblems: first, allocate resources optimally for a certain amount of expected 
resources; and second, choose what message to send in what state of the world and 
with what probability. Each message induces a posterior belief about the expected 
amount of resources, and optimization requires that the optimal distribution of mes-
sages be chosen.

The first  subproblem is a knapsack problem, and the second  subproblem is a 
Bayesian persuasion problem.7 As mentioned above, Kamenica and Gentzkow 
(2011) showed that Bayesian persuasion can be viewed as picking the optimal dis-
tribution of Bayes plausible posterior beliefs. When the principal cares only about 
the mean of posterior beliefs, as is the case here, Bayes plausibility is equivalent to 
the requirements that (i)  the expectation of mean posterior beliefs is equal to the 
mean of the distribution of resources and (ii) the prior distribution of resources is a 
mean preserving spread of the distribution of posterior means.8 As explained above, 
optimization in the space of induced posterior beliefs induces a  convexification 

7 In the knapsack problem, there is a collection of items, each with a given weight and a given benefit. The 
objective is to select a subset of the items that maximizes the sum of benefits subject to a constraint on the total 
weight allowed.

8 The second requirement is due to the fact that the principal’s messages induce a garbling of the receiver’s mean 
posterior beliefs relative to the true state (see Blackwell 1953; Gentzkow and Kamenica 2016; and Kolotilin 2018).
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of the payoff to the principal under different posterior beliefs.9 However, in the 
space of mean posterior beliefs, the requirement that mean posterior beliefs are 
 second-order-stochastically-dominated by prior beliefs implies that convexification 
in this space might be “partial” rather than “full.”

We describe interpretable conditions under which it is possible to explicitly solve 
the problem with only two messages: “high enforcement” and “enforcement as 
usual” that indicate that the amount of expected resources is high and low, respec-
tively. The message “enforcement as usual” may be interpreted as a moratorium 
on parking enforcement in some clearly defined situations. Our results indicate 
that such a moratorium can be an important part of an optimal enforcement policy. 
Intuitively, such a moratorium improves overall deterrence because it is possible 
to achieve stronger deterrence than would be achieved otherwise, when the mora-
torium is not applied.10 We also provide a tight upper bound on the total number 
of messages needed to achieve the optimal solution in the general case as well as a 
general example that attains this bound.

Related Literature.—The question of how to allocate resources in order to 
achieve deterrence is typically analyzed in the context of what is known as a “secu-
rity game.” A security game is a  two-player, possibly  zero-sum,  simultaneous-move 
game in which an attacker has to decide where to strike while a defender has to 
decide where to allocate its limited defense resources.11 Analysis of such games 
has been applied by political scientists to the question of how to defend against 
terrorist attacks (Powell 2007) and by computer scientists to a host of related issues 
(see Tambe 2011 and the references therein). Security games are closely related to 
Colonel Blotto games (Borel 1953; Roberson 2006; Hart 2008). These are  zero-sum 
 simultaneous-move  two-player games in which players allocate a given number of 
divisions to  n  different battlefields. Each battlefield is won by the player who allo-
cated a larger number of divisions there, and the player who wins a larger number 
of battlefields wins the game. As explained above, we consider a security game in 
which there is uncertainty about the amount of resources available to the defender, 
with an added stage in which the defender can send a message about the state of the 
world.

The question addressed here of how to allocate a given amount of law enforcement 
resources is different from, and complementary to, the questions famously posed by 
Becker (1968) about how much resources should be allocated to law enforcement 
and how to divide these resources between enforcement effort that increases the 
probability that the offender is caught and the penalty imposed on the offender if 
caught. Polinsky and Shavell (2000) provide a survey of the theoretical literature on 

9 More precisely, optimization induces a convexification of payoffs if the problem is to minimize social cost. It 
induces a concavification of payoffs if the problem is the maximization of deterrence, as described in the example 
above.

10 Indeed, casual empiricism suggests that local governments occasionally experiment with such moratoriums. 
For example, it is supposedly well known and certainly widely believed among residents of Tel Aviv that the city 
does not enforce parking violations from Friday to Saturday evenings as well as from the evening before to the 
evening of state holidays.

11 The fact that in our formulation the attacker responds only after observing the defender’s signal turns our 
game into a sequential rather than a simultaneous move game.
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the optimal form of enforcement, and Chalfin and McCrary (2019) provide a survey 
of the relevant empirical literature.

Within the law and economics literature, the two papers that are most closely 
related to our work are by Lando and Shavell (2004) and Eeckhout, Persico, and 
Todd (2010), who both consider the question of how to allocate enforcement 
resources. Both papers show that it may be beneficial to concentrate enforcement on 
a subset of the population. Our paper is more general in that we consider any num-
ber of locations, we add uncertainty, and we consider the question of how to further 
improve deterrence through Bayesian persuasion, or communication.

Finally, there is a rich literature that started with Aumann and Maschler (1995) and 
Kamenica and Gentzkow (2011) that studies how a sender with commitment ability 
can affect a receiver’s beliefs and thereby induce it to act in a way that benefits the 
sender.12 Within this literature, Kolotilin (2018) has observed that Bayesian persua-
sion problems may be represented as (infinite dimensional) linear programming prob-
lems and characterized the optimal solution through the dual problem. Kolotilin et al. 
(2017) and Alonso and Câmara (2016) have considered Bayesian persuasion prob-
lems with many receivers. In the model of Kolotilin et al. (2017), receivers’ actions are 
independent and impose no externalities on each other, so the sender may optimally 
apply the same persuasion scheme to all of the receivers. It follows that the fact that 
there are many receivers makes no difference, as is the case here. In the model of 
Alonso and Câmara (2016), receivers’ actions do impose externalities on each other, 
and the optimal persuasion scheme involves the cultivation of special coalitions of 
receivers. As mentioned above, the fact that when persuasion is projected into the 
space of posterior means full convexification of the underlying objective function 
in this space may be impossible and the distribution of posterior means needs to be 
 second-order-stochastically-dominated by the prior distribution has been observed by 
Kamenica and Gentzkow (2011).13 Methods for solving the problem in this case have 
been developed by Gentzkow and Kamenica (2016); Kolotilin et al. (2017); Dworczak 
and Martini (2019); and Kleiner, Moldovanu, and Strack (2020).

The rest of the paper proceeds as follows. The model is presented in Section I. 
Section II describes the Optimal Ratio Rule and its implications. Section III intro-
duces two lemmas that generalize the famous lemma of Aumann and Maschler 
(1995, 25) that are useful for subsequent analysis. Section IV considers the case of 
“monotone” problems. In Section V, we explain the sense in which the problem is a 
constrained convexification problem. In Section VI, we briefly address the issue of 
dynamics, or deterrence over time. Finally, Section VII concludes with a discussion 
of the practicability of our approach.

I. Model

Consider a city with  N ≥ 1  different locations. Illegal parking is a problem 
in all of these locations. The city determines the amount of resources devoted to 

12 For a recent survey of the more general literature on “information design” of which this literature is an 
important part, see Bergemann and Morris (2019).

13 See footnote 8.
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enforcement in each location out of the total amount of available resources, denoted  
r . The amount of available resources is uncertain.14 It is given by   r k   ,  k ∈ {1, …, K} , 
with probability   π k   , respectively, where  0 ≤  r 1   < ⋯ <  r K    and   ∑ k=1  

K     π k   = 1 . 
The expected amount of resources is denoted by  E[r] . We treat the distribution of 
resources as exogenously given, but it may obviously depend on the city’s decisions 
and provides another dimension on which to optimize the allocation of resources. 
We discuss two ways of endogenizing the distribution of resources in Section VI 
below.

We refer to  k  as the state of the world. The city knows the realization of the state 
of the world  k  and hence also the realization   r k   , but drivers only know the distribu-
tion  π = ( π 1  , …,  π K  ) .

As explained above, we assume that the city can commit to a policy of disseminat-
ing information about its enforcement effort. We model this possibility by assuming 
that the city may send a message  m ∈ {1, …, M}  about the state of the world  k . The 
probability that the city sends message  m  in state  k  is denoted by   p k  (m) = Pr(m | k) . 
It follows that

(1)   p k   (m)  ≥ 0 for every k and m,  and   ∑ 
m=1

  
M

     p k   (m)  = 1 for every k .

The posterior belief that drivers have over the state of the world  k  upon receiving 
the message  m  is denoted

  Pr (k | m)  =   
 p k   (m) π (k) 

  _______________  
 ∑  k ′  =1  

K      p  k ′     (m) π ( k ′  ) 
    ;

and the amount of expected resources available conditional on message  m  is denoted  
r(m) ≡  ∑ k=1  

K     r k   Pr(k | m) .
Denote the amount of resources allocated to enforcement in neighborhood  i  in 

state  k  when the city sends the message  m  by   a  k  
i  (m) .15 If message  m  is sent with 

probability zero in state  k , then   a  k  
i  (m) ≡ 0  for every location  i .

The city chooses the amounts   a  k  
i   (m)   subject to its resource constraint. In every 

state  k ∈ {1, …, K} ,

(2)    ∑ 
i=1

  
N

     a  k  
i  (m) ≤  r k   

for every message  m ∈ {1, …, M} .
The objective of the city is to allocate the amounts of enforcement resources 

 { a  k  
i  (m)}  and send the messages  m ∈ {1, …, M}  with probabilities  {  p k  (m)}  so as 

to minimize the extent of illegal parking. The measure of illegal parking in each 

14 The state of the world may be uncertain because the availability of enforcement resources in any given 
moment may be subject to random noise. Moreover, as we show below, such noise is necessary for persuasion to be 
effective and so may be purposefully introduced by the principal to improve deterrence.

15 We show below that conditioning the level of enforcement on the message on top of just the state of the world 
may contribute to deterrence.
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location  i  is given by a function   q   i ( a   i (m))  that is decreasing in the expected amount of 
enforcement resources   a   i (m) ≡  ∑ k=1  

K     a  k  
i  (m)Pr(k|m)  in that location given message  m .

For simplicity, we focus on the special case where the measure of illegal park-
ing in each location is given by a threshold function. Namely, for each loca-
tion  i ∈ {1, …, N} , there exists some threshold   τ   i  > 0  such that

   q   i  ( a   i  (m) )  =  
{

 
1,

  
 if  a   i  (m)  <  τ   i ;

   
0,

  
if  τ   i  ≤  a   i  (m) .

    

In itself, the assumption that an individual driver is deterred from illegal park-
ing if the probability of sanction is above a certain threshold involves no loss of 
generality if we assume that the payoffs from parking legally, parking illegally and 
being sanctioned, and parking illegally without being sanctioned are themselves 
constant for each individual in each location. It follows that a continuum of drivers 
whose thresholds are distributed according to some continuous cumulative distribu-
tion function  F  would induce a continuous function   q i   = 1 − F . If the distribution 
of drivers’ thresholds  F  is bell shaped, then the cumulative distribution of drivers’ 
thresholds would be  S-shaped (see the concluding section for further elaboration of 
this claim). The assumption that the function   q   i   is a threshold function is an extreme 
version of this case, when all the drivers in location  i  happen to employ the same 
threshold rule.16

Hence, the city’s objective is to allocate the amounts of enforcement resources 
 { a  k  

i  (m)}  and send messages with probabilities  {  p k  (m)}  so as to minimize the expected 
social cost of illegal parking as given by

(3)    min  
 { a  k  

i   (m) } , { p k   (m) } 
  

 
     ∑ 

k=1
  

K

      ∑ 
m=1

  
M

      ∑ 
i=1

  
N

     q   i  ( a   i  (m) )   s   i   p k   (m)   π k    ,

where   s   i  ,  i ∈ {1, …, N} , denotes the social disutility generated by illegal parking in 
location  i , subject to the resource constraint (2) and the constraints imposed by the 
fact that the   p k  (m)  terms are probabilities (1).

Importantly, we assume that the city can commit to its strategy. That is, it deter-
mines the allocation and probabilities  { a  k  

i  (m)}, {  p k  (m)} . Then, it observes the state 
of the world  k  and draws a message  m  that is transmitted to drivers using the prob-
abilities  {  p k  ( ⋅ )} . There can be no effective persuasion as described here without an 
ability to commit. As mentioned above, we believe that in the context of the problem 
studied here, of a central authority that seeks to deter socially unwanted behavior, 
the ability to commit is a reasonable assumption. This is because it is reasonable 

16 The assumption that the   q   i   terms are given by threshold rules greatly simplifies the discussion and description 
of the solution because it permits an easy identification of the set inflection points of the underlying objective func-
tion that is necessary for effective convexification. If the functions   q i    are not threshold functions, then it is still possi-
ble to solve the problem along the same lines described here, but it would be more difficult to explicitly identify the 
inflection points necessary for effective convexification. The Optimal Ratio Rule would be a lot more cumbersome, 
and the disutility function  D(r)  that is described below would not be a step function without this assumption.
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to expect that the central authority would be closely monitored by the media, who 
would alert the public in case the central authority deviates from its strategy. The 
short-term benefit from deviation is surely smaller than the long-term benefit from 
maintaining deterrence, so a patient central authority has an interest to maintain its 
ability to commit.

Drivers in different locations care only about what messages imply with respect to 
enforcement in their own location. The assumption of commitment implies that driv-
ers do not care, nor do they have anything relevant to learn about the state of the world 
from the level of enforcement in other locations. Of course, if the city cannot commit, 
then it can send two different locations a message that it will enforce there even though 
it only has resources available for enforcement in just one location. However, in such a 
case, drivers would not necessarily believe the city’s message anyway.17

Observe that the constraints (1) and (2) are linear in probabilities  {  p k  (m)}  and 
resources  { a  k  

i  (m)} , respectively, but the objective function (3) is  nonlinear both 
because   q   i ( a   i (m))  is a  nonlinear function of   a   i (m)  and because   a   i (m)  itself is a 
 nonlinear function of the probabilities  {  p k  (m)} .

Alternatively, it is also useful to consider the city’s problem as how to allocate the 
amounts of enforcement resources   { a  k  

i   (m) }   and send messages with probabilities 
 {  p k  (m)}  so as to maximize expected weighted deterrence as given by

(4)    max  
 { a  k  

i   (m) } , { p k   (m) } 
  

 
     ∑ 

k=1
  

K

      ∑ 
m=1

  
M

      ∑ 
i=1

  
N

     d   i  ( a   i  (m) )   s   i   p k   (m)   π k    ,

where the function   d   i ( a   i (m)) = 1 −  q   i ( a   i (m))  describes the strength of deterrence 
and   s   i   is interpreted as the benefit of deterrence in location  i  (which is equal to the 
decrease in social disutility). Again, the constraints (1) and (2) are linear in  {  p k  (m)}  
and  { a  k  

i  (m)} , respectively, but the objective function (4) is not.
It is helpful to represent the allocation of resources in matrix form, as shown 

in the next example. Suppose that there are three locations and three states of the 
world. The allocation of resources is given by the following table.

  π 1     a  1  
1 (m)   a  1  

2 (m)   a  1  
3 (m)   r 1   

  π 2     a  2  
1 (m)   a  2  

2 (m)   a  2  
3 (m)   r 2   

  π 3     a  3  
1 (m)   a  3  

2 (m)   a  3  
3 (m)   r 3   

  τ   1    τ   2    τ   3  

If no messages are sent, then we may denote  m = ∅  in the matrix above; if the 
message sent reveals the state of the world, then we may denote  m =  m j    in row  j  
of the matrix.

17 The analysis of equilibrium behavior under limited commitment is outside the scope of this paper. Crawford 
and Sobel (1982) is the classical reference for this subject. See Lipnowski, Ravid, and Shishkin (2021) and Eilat 
and Neeman (2020) for a recent discussion of these issues. 
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The case where two messages   m 1    and   m 2    are sent is represented as follows.

  π 1     a  1  
1 ( m 1  )   a  1  

2 ( m 1  )   a  1  
3 ( m 1  )   r 1   

  π 2   
 

  a  2  
1 ( m 1  )   a  2  

2 ( m 1  )   a  2  
3 ( m 1  ) 

  r 2   

  a  2  
1 ( m 2  )   a  2  

2 ( m 2  )   a  2  
3 ( m 2  ) 

  π 3     a  3  
1 ( m 2  )   a  3  

2 ( m 2  )   a  3  
3 ( m 2  )   r 3   

  τ   1    τ   2    τ   3  

Message   m 1    is sent in states 1 and 2, and message   m 2    is sent in states 2 and 3. This 
example illustrates the reason that not allowing the allocation to depend on the mes-
sage sent involves a loss of generality: it does not allow the city to sometimes deter 
only in locations 1 and 2 in state 2 (when it sends message   m 1   ), and sometimes deter 
in locations 1, 2, 3 (when it sends message   m 2   ). This is something that the city may 
benefit from if the amount of resources available in state 3 permits deterrence in 
locations 1, 2, 3 (  r 3   >  τ 1   +  τ 2   +  τ 3   ) but the amount available in states 1 and 2 only 
permits deterrence in locations 1 and 2.

II. The Optimal Ratio Rule

Suppose that the probabilities and allocations   p k  (m)  and  { a  k  
i  (m)}  satisfy the con-

straints (1) and (2). Denote the set of locations on which each message  m  achieves 
deterrence by  S(m) ⊆ {1, …, N} . It follows that the following deterrence constraint

(5)   a   i  (m)  ≡   ∑ 
k=1

  
K

     a  k  
i   (m) Pr (k | m)  ≥  τ   i  

is satisfied for each location  i ∈ S(m) , and violated for locations  i ∉ S(m) , for 
every message  m ∈ M  that is sent with a positive probability. It also follows that we 
may identify messages with the set of locations on which they achieve deterrence. 
Thus, no loss of generality is implied by the assumption that  M ≡  2   {1,…,N}  . The 
set of messages includes a message that achieves no deterrence (or that achieves 
deterrence on the empty set,  ∅  ∈ M ). And no loss of generality is implied by the 
assumption that exactly one message deters on any given set of locations.18

The identification of messages with the set of locations on which they achieve 
deterrence clarifies that persuasion, or the sending of messages, can only be useful 
if there is some underlying uncertainty. That is, the city cannot benefit from endog-
enously generated uncertainty about enforcement.

PROPOSITION 1: Persuasion is ineffective without true underlying uncertainty. If 
there is only one state of the world, then there exists an optimal solution that does 
not involve ( nontrivial ) persuasion.

18 If two messages  m  and   m ′    deter on the same set of locations, then they can be merged into one message  m ∪  m ′   .
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PROOF:
Suppose that there is only one state of the world. Optimality requires that in this 

state, a message  m  that is such that  S(m)  maximizes the value of deterrence subject 
to the resource constraint is sent with probability one. Sending another message   m ′    
that induces the same or less deterrence subject to the resource constraint (on the set 
 S( m ′   ) ) would be either unnecessary or strictly worse. ∎

The next result shows that no loss of optimality is implied by restricting attention 
to a specific class of allocations that spread resources across different locations in a 
way that is proportional to their deterrence thresholds.

PROPOSITION 2 (the “Optimal Ratio Rule”): Given probabilities  {  p k  (m)}  and an 
allocation  { a  k  

i  (m)}  that satisfy the probability and resource constraints (1 ) and (2), 
the same probabilities together with the allocation  {( a  k  

i    )   ⁎ (m)}  that is given by:

 • For every state  k , for every message  m  that is sent with a positive probability 
at  k , and for every location  i ∈ S(m) ,

    ( a  k  
i  )    

∗
  (m)  =    τ   i  _________ 

 ∑ j∈S (m)   
 
     τ     j 

   ⋅  r k    ;

 • and for every location  i ∉ S(m) , or messages  m  that are sent with probabil-
ity zero,

    ( a  k  
i  )    

∗
  (m)  = 0 ;

achieve equal or better deterrence than  { a  k  
i  (m)} .

PROOF:
Fix probabilities  {  p k  (m)}  and an allocation  { a  k  

i  (m)}  that satisfy the constraints (1) 
and (2). For every location  i ∈ S(m)  that is deterred by message  m ,

   a   i  (m)  =   ∑ 
k=1

  
K

    Pr (k | m)   a  k  
i   (m)  ≥  τ   i  .

Summing over  i ∈ S(m)  and changing the order of summation yields

    ∑ 
i∈S (m) 

  
 

     τ   i  ≤   ∑ 
i∈S (m) 

  
 

      ∑ 
k=1

  
K

    Pr (k | m)   a  k  
i   (m) 

 ≤   ∑ 
k=1

  
K

    Pr (k | m)   ∑ 
i∈S (m) 

  
 

     a  k  
i   (m) 

 ≤   ∑ 
k=1

  
K

    Pr (k | m)   r k    ,

where the last inequality follows from the resource constraint (2).
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It therefore follows that

   τ   i  ≤   ∑ 
k=1

  
K

    Pr (k | m)    
 τ   i   r k   _________ 

 ∑ j∈S (m)   
 
     τ    j 

   ,

and so the allocation  ( a  k  
i    )   ∗ (m) = ( τ   i   r k  / ∑ j∈S(m)  

     τ    j  )  for every  i ∈ S(m) , state  k , and 
message  m , and  ( a  k  

i    )   ∗ (m) = 0  for every  i ∈ {1, …, N} \ S(m) , state  k , and message  
m , also achieves deterrence of the set  S(m) . ∎

Intuitively, allocation according to the Optimal Ratio Rule minimizes unneces-
sary waste of enforcement resources. This is illustrated by the next example.

Example 1: Consider the case in which the city has three locations with the cor-
responding thresholds   τ   1  = 2 ,   τ   2  = 3 , and   τ   3  = 4 . There are three equally likely 
states, with the resources   r 1   = 1 ,   r 2   = 10 , and   r 3   = 14 , respectively. The city 
allocates its resources and sends two messages   m 1    and   m 2    as depicted in the follow-
ing matrix.

   1 _ 3   
 

1 − p 1

1 
p 1

   1 _ 3   2 3 5 10

   1 _ 3   3 6 5 14

2 3 4

Message   m 1    is sent in state  1  with probability  1 − p , and message   m 2    is sent in 
state 1 with probability  p , and in states  2  and  3 .

The city achieves deterrence with message   m 2    but not with message   m 1   . Thus, 
a larger probability  p  implies a larger probability of deterrence, but if  p  is too 
large, then the city loses deterrence in the third location. The maximum probabil-
ity  p  that allows the city to deter in all three locations is  p = 1/2 . The overall 
probability of deterrence (in all three locations) with this probability  p = 1/2  
is  1/3 ⋅ 1/2 + 1/3 + 1/3 = 5/6 .

If, however, the city allocates its enforcement resources proportionally to the 
deterrence thresholds in the three locations as implied by the Optimal Ratio Rule, 
then it can achieve more deterrence. The allocation according to the Optimal Ratio 
Rule is depicted in the following matrix.

   1 _ 3   
 

 1 − p 1
1

 p    2 _ 9   × 1    3 _ 9   × 1    4 _ 9   × 1 

   1 _ 3      2 _ 9   × 10    3 _ 9   × 10    4 _ 9   × 10 10

   1 _ 3      2 _ 9   × 14    3 _ 9   × 14    4 _ 9   × 14 14

2 3 4
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With this allocation, the city can set  p = 3/4  and achieve deterrence in all three 
locations with probability  1/3 ⋅ 3/4 + 1/3 + 1/3 = 11/12 .

The Optimal Ratio Rule implies that the city’s problem—minimize expected 
social cost (3) subject to the probability and resource constraints (1) and (2)—can 
be recast as a problem of choosing the probabilities  {  p k  (m)}  so as to minimize the 
expected social cost (6) below,

(6)    min  
 { p k   (m) } 

  
 
     ∑ 

k=1
  

K

      ∑ 
m=1

  
M

      ∑ 
i∈ {1,…,N} \ S (m) 

  
 

    s   i   p k   (m)   π k   

(for each message  m  that is sent with a positive probability, only locations  i ∉ S(m)  
contribute to social cost and are therefore included in the sum) subject to the prob-
ability constraints (1) and the deterrence constraint (5) applied to  {( a  k  

i    )   ∗ (m)}  as 
follows:

(7)    ( a   i )    
∗
  (m)  ≡   ∑ 

k=1
  

K

      ( a  k  
i  )    

∗
  (m) Pr (k | m)  ≥  τ   i  

for every message  m ∈ M  that is sent with a positive probability, and for every 
location  i ∈ S(m) .19

The objective function (6) is linear in the probabilities, but the deterrence con-
straint is not because the conditional probabilities  Pr(k | m)  are not linear in the prob-
abilities  {  p k  (m)}  and because the constraint is only imposed on messages that are 
sent with a positive probability rather than on all messages. Nevertheless, as shown 
by the next proposition, the problem can be recast as a linear programming problem.

COROLLARY:  The problem—minimize expected social cost (3) subject to the 
probability and resource constraints (1) and (2), respectively—can be recast as 
the linear programming problem: minimize expected social cost (6) subject to the 
probability constraints (1) and the deterrence constraints

(8)    ∑ 
k=1

  
K

     p k   (m) π (k)   ( a  k  
i  )    

∗
  (m)  ≥  τ   i    ∑ 

k=1
  

K

     p k   (m) π (k)  

for every message  m ∈ M  and neighborhood  i ∈ S(m) .

PROOF:
The problem—minimize (6) subject to the probability and deterrence constraints (1) 

and (8)—is a linear programming problem. The objective function (6) is obtained 
from (3) upon substitution of the resources according to the Optimal Ratio Rule. 

19  It may be more natural to think of the problem as maximize expected weighted deterrence

    max  
 { p k   (m) } 

        ∑ 
k=1

  
K

      ∑ 
m=1

  
M

      ∑ 
i∈S (m) 

  
 

     s   i   p k   (m)   π k   

subject to the same constraints.
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The deterrence constraints (8) are obtained from the deterrence constraints (7) upon 
multiplication of both the right- and  left-hand sides of the constraint by the denom-
inator of the conditional probability  Pr(k | m) =  ( p k  (m)π(k)) / ( ∑  k ′  =1  

K     p  k ′    (m)π( k ′   ))  . 
The deterrence constraints can be imposed on all messages because for mes-
sages  m ∈ M  that are not sent with a positive probability   p k  (m) = 0 , which trivi-
ally satisfies the deterrence constraint. ∎

The result that the problem can be recast as a linear programming problem is use-
ful because there are several well-known algorithms for solving linear programming 
problems that work very well in practice. We do not think that the type of problem 
described here is likely to be very large in practice anyway, but another advantage 
of linear programming problems is that they can be solved in time that is polyno-
mial in the size of the input of the problem. However, here, the size of the input is 
the product of the number of states and the number of messages,  k ×  2   N  , which is 
exponential in the number of locations,  N .

III. “Splitting”

As explained in the introduction, the second approach to the problem consists of 
dividing it into two separate  subproblems. The solution of the second  subproblem 
uses ideas from the literature on Bayesian persuasion and in particular the idea that 
it may be possible to “split” a given expected amount of enforcement resources into 
two or more expected amounts that would each be induced with a certain probabil-
ity. In this section, we explain how this can be done.

Each message  m  induces a belief about the posterior expectation of resources, and 
so a message policy, in which different messages are sent with different probabili-
ties in different states of the world, induces a distribution of posterior expectations 
of resources. The expected amount of resources  E[r]  is thus “split” into different 
posterior expectations  r(m) ≡  ∑ k=1  

K    p(k | m)  r k   , which are each realized with the 
probability  Pr(m) ≡  ∑ k=1  

K     p k  (m)  π k    with which message  m  is sent, such that

  E [r]  =   ∑ 
m=1

  
M

    Pr (m)  ⋅ r (m)  .

The objective of Bayesian persuasion is to pick the optimal “split,” or dis-
tribution of messages, from the set of distributions of posterior expectations 
of resources that preserve the mean of the distribution of resources and are 
 second-order-stochastically-dominated by the prior distribution, as mentioned in 
the introduction.

In this section, we provide two useful results about splitting. The next lemma is 
a generalization of the famous lemma of Aumann and Maschler (1995). Denote the 
posterior total expected amount of resources conditional on two messages,  m  and   
m ′   , by

  r (m,  m ′  )  ≡   
Pr (m) 
 ______________  

Pr (m)  + Pr ( m ′  ) 
   ⋅ r (m)  +   

Pr ( m ′  ) 
 ______________  

Pr (m)  + Pr ( m ′  ) 
   ⋅ r ( m ′  )  .
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LEMMA 1: 20 Any two messages  L  and  H  that are sent with probabilities  Pr(L)  and  
Pr(H )  and that induce posterior expectations  r(L) < r(H )  can be replaced with 
two messages   L ′    and   H ′    that induce any two posterior expectations  r(L) ≤ r( L ′   ) 
≤ r( H ′   ) ≤ r(H )  such that

(i ) the overall probability of sending messages  L  and  H  is preserved, or

  Pr (L)  + Pr (H)  = Pr ( L ′  )  + Pr ( H ′  ) , 

and (ii ) the posterior expectation conditional on the two messages is preserved, or

  r (L, H)  = r ( L ′  ,  H ′  )  ,

without affecting any of the other messages or the probabilities with which they are 
sent.

The proof of Lemma 1 is similar to the proof given by Aumann and Maschler 
(1995) and is omitted. The next lemma provides another useful observation, which 
is also a generalization of the same lemma of Aumann and Maschler. This lemma 
characterizes the maximal distance that can be achieved between any two induced 
beliefs about the total expected amount of resources. This maximal distance imposes 
a constraint on the maximal degree of convexification that can be achieved in our 
problem, as explained in the next two sections.

LEMMA 2: Given a distribution of resources   r 1  , …,  r K   , and given any two total 
expected amounts of resources   r L   < E[r] <  r H   , it is possible to send two messages  
L  and  H  such that

  r (L)  =  r L  ,  r (H)  =  r H   ,

provided that   r 1   ≤  r L   ,   r H   ≤  r K   , and

   r L   ≥   
 ∑ k=1  

 k ′  −1     π k    r k   +  (1 − p)   π  k ′      r  k ′    
   ______________________  

 ∑ k=1  
 k ′  −1     π k   +  (1 − p)   π  k ′    

    ,

where   k ′   ∈ {1, …, K }  and  p ∈ [0, 1)  are the unique solution to

   r H   =   
 ∑ k= k ′  +1  

K     π k    r k   + p  π  k ′      r  k ′      __________________  
 ∑ k= k ′  +1  

K     π k   + p  π  k ′    
    .

PROOF:
The maximum difference between   r H    and   r L    is obtained when message  H  is sent 

in states  k ∈ { k ′   + 1, …, K } , message  L  in states  k ∈ {1, …,  k ′   − 1} , and in state   

20 Letting  k = 2  and assuming that the city sends only two messages  L  and  H  that fully reveal the state of the 
world (such that  r(L) =  r 1    and  r(H ) =  r 2   ) reproduces Aumann and Maschler’s lemma.
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k ′    messages  H  and  L  are sent with probabilities  p  and  1 − p , respectively, for some 
state   k ′   ∈ {1, …, K }  and probability  p . The condition on   r L    reflects the lowest pos-
sible value of   r L    given a set value for   r H    under this signaling/persuasion policy. Less 
extreme messages permit closer values of   r H    and   r L   . ∎

The next example illustrates the restrictions that the requirement of 
 second-order-stochastic-dominance imposes on the maximum difference between 
the high and low posterior expectations  r(H )  and  r(L)  when the city sends two mes-
sages  H  and  L .

Example 2: Suppose there are three states of the world. Resources are given by 
 ( r 1  ,  r 2  ,  r 3  ) = (0, 1/2, 1) , and the prior is  ( π 1  ,  π 2  ,  π 3  ) = (1/4, 1/2, 1/4) . The expected 
amount of resources is  E[r] = 1/2 . Suppose the city sends two messages,  L  and  H . 
As mentioned in the introduction, because sending messages about the state of the 
world induces a garbling of the drivers’ beliefs relative to the true state, it follows 
from Blackwell (1953) that the distribution of posterior expectations of resources   r H    
and   r L    is second-order-stochastically-dominated by the prior distribution.

In turn, this implies that in this example, the lowest possible posterior expectation   
r L    depends on the highest induced posterior expectation   r H    and is given by

   r L   = max {  
3 r H   − 2

 _ 
8 r H   − 5

  , 0}  .

If  1/2 <  r H   ≤ 2/3 , then   r L   < 1/2  is unrestricted; the lowest possible value of   
r L    increases monotonically with  2/3 <  r H   < 1 ; and if   r H   = 1 , then   r L   = 1/3 .

IV. The Monotone Case

We may assume without loss of generality that the locations can be ordered by 
their importance, or

   s   1  ≥  s   2  ≥ ⋯ ≥  s   n  .

In this section, we assume that deterrence thresholds can also be ranked in the same 
way, or

   τ   1  ≤  τ   2  ≤ ⋯ ≤  τ   n  .

We refer to this assumption as the monotonicity assumption. Monotonicity allows us 
to completely solve the problem, but it involves a considerable loss of generality. In 
particular, it implies that it is also more effective to deploy enforcement resources in 
more important locations, or

     s   1  _ 
 τ   1 

   ≥    s   2  _ 
 τ   2 

   ≥ ⋯ ≥    s   n  _ 
 τ   n 

    .

The monotone case captures a situation where in “more important locations” as 
defined by the disutilities  { s   i  } , drivers are also “better behaved” in the sense of 
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having a lower threshold   τ   i   for not parking illegally. Indeed, one often hears the 
complaint that cities care more about law enforcement in “good” compared to “bad” 
neighborhoods, and it seems that people are generally harder to deter in bad com-
pared to good neighborhoods.

It is straightforward to verify that monotonicity implies that if it is optimal to deter 
at neighborhood  i  under some message  m , then it is also optimal to deter at loca-
tion  j < i . It follows that the number of messages that is needed is at most  N + 1 . 
Namely, in the optimal solution, it is enough to restrict attention only to those mes-
sages associated with the sets  ∅ ,  {1} ,  {1, 2} , …, {1, …, N } .

Monotonicity simplifies the city’s allocation problem. If the total expected amount 
of resources is less than   τ   1  , then no deterrence is possible. The social cost associated 
with that is   ∑ i=1  

N     s   i   because no drivers are deterred from illegal parking. If the total 
expected amount of resources is more than   τ   1   but less than   τ   1  +  τ   2  , then it is pos-
sible to deter only in neighborhood 1. The social cost that is associated with that is  
  ∑ i=2  

N     s   i   because drivers in neighborhood 1 are deterred from illegal parking, and 
so on. Continuing in the same way, we see that devoting all the available resources 
to deterrence with no communication produces the following  non-increasing 
 step-function social cost,

    D (r)  =  

⎧
 

⎪
 ⎨ 

⎪
 

⎩
  

 ∑ i=1  
N     s   i ,

  

 if 0 ≤ r <  τ   1 ;

    ∑ i=n  
N     s   i ,  if  ∑ i=1  

n−1     τ   i  ≤ r <  ∑ i=1  
n     τ   i , 2 ≤ n ≤ N;     

0,

  

if  ∑ i=1  
N     τ   i  ≤ r,

    

that maps the amount of available expected resources  r  into social disutility. The 
steps in the function  D(r)  become longer and lower with  r , as shown in Figure 1 
below.

Persuasion, or the sending of messages, allows the city to achieve a lower expected 
social cost than  D(r) . The value of the city’s objective function when it sends mes-
sages  1, …, M  with probabilities  Pr(1), …, Pr(M)  and with induced mean posterior 
beliefs  r(1), …, r(M) , respectively, is

    ∑ 
m=1

  
M

    Pr (m)  ⋅ D (r (m) )  .

The monotone case admits a complete solution of the city’s problem of minimize 
expected social cost (6) subject to the probability and deterrence constraints (1) and 
(8), respectively, with no more than two messages, as follows.

PROPOSITION 3: Suppose that the monotonicity assumption holds. Suppose that 
the expected amount of resources  E[r]  is such that   ∑ i=1  

n−1     τ   i  ≤ E[r] <  ∑ i=1  
n     τ   i   for 

some  2 ≤ n < N .21 Then, the optimal solution involves the sending of only two 
messages  L  and  H  such that the posterior expectation  r(H )  is set equal to   ∑ i=1  

n    τ   i   
if this is possible given the distribution of resources, and the posterior expectation  
r(L)  is set equal to   ∑ i=1  

n−1    τ   i   if this is possible given the distribution of resources, and 

21 If either  E[r] <  τ   1   or   ∑ i=1  N    τ   i  ≤ E[r] , then the problem is trivial. In the former case, no deterrence is possi-
ble, and in the latter case, full deterrence is possible with no messages. 
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as low as possible otherwise. If the distribution of resources does not allow to set  
r(H ) =  ∑ i=1  

n    τ   i  , then persuasion is unhelpful and no messages (or equivalently just 
one message) should be sent.

PROOF:
The Proof of Proposition  3 relies on Lemma  1. Suppose that   ∑ i=1  

n−1    τ   i  ≤ E[r] 
<  ∑ i=1  

n    τ   i   for some  2 ≤ n < N .
If a policy includes two messages  L  and  H  that induce posterior expectations  r(L) 

<  ∑ i=1  
n−1    τ   i  <  ∑ i=1  

n    τ   i  < r(H ) , then expected disutility can be lowered if the two 
messages  L  and  H  are replaced with messages   L ′    and   H ′    that are such that  r( L ′   ) 
=  ∑ i=1  

n−1    τ   i   and  r( H ′   ) =  ∑ i=1  
n    τ   i  . The step structure of the disutility function  D(r)  

implies that the straight line that connects the points   (r( L ′   ), D(r( L ′   )))   and   (r( H ′   ), 
D(r( H ′   )))   lies strictly below the straight line that connects the points   (r(L), D(r(L)))   
and   (r(H ), D(r(H )))  . Therefore, the expected disutility from sending messages   L ′    
and   H ′    instead of  L  and  H , which lies on this line at the point  r(L, H ) = r( L ′  ,  H ′   ) , 
is lower, or

    
Pr (L) D (r (L) ) 

  _____________  
Pr (L)  + Pr (H) 

   +   
Pr (H) D (r (H) ) 

  _____________  
Pr (L)  + Pr (H) 

   ≤   
Pr ( L ′  ) D (r ( L ′  ) ) 

  ______________  
Pr ( L ′  )  + Pr ( H ′  ) 

   +   
Pr ( H ′  ) D (r ( H ′  ) ) 

  ______________  
Pr ( L ′  )  + Pr ( H ′  ) 

   .

It therefore follows that performance of this replacement of messages decreases 
expected social disutility from

    ∑ 
m≠L,H

  
 

    Pr (m) D (r (m) )  + Pr (L) D (r (L) )  + Pr (H) D (r (H) )  

Figure 1.  D(r)  in the Monotone Case

s3 + s2 + s1

s3 + s2

τ1 + τ2τ1 τ1 + τ2 + τ3

s3 
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to

    ∑ 
m≠L,H

  
 

    Pr (m) D (r (m) )  + Pr ( L ′  ) D (r ( L ′  ) )  + Pr ( H ′  ) D (r ( H ′  ) )  .

If a policy includes two messages  L  and  H  that induce posterior expectations   
∑ i=1  

n−1    τ   i  ≤ r(L)  and   ∑ i=1  
n    τ   i  < r(H ) , then expected disutility can be lowered if the 

two messages  L  and  H  are replaced with messages   L ′    and   H ′    that are such that 
 r( L ′   ) = r(L)  and   ∑ i=1  

n    τ   i  = r( H ′   ) . The straight line that connects the points 
  (r( L ′   ), D(r( L ′   )))   and   (r( H ′   ), D(r( H ′   )))   still lies strictly below the straight line that 
connects the points   (r(L), D(r(L)))   and   (r(H), D(r(H )))  . Therefore, performance of 
this replacement of messages also decreases expected social disutility as before.

It follows that it is enough to send only two messages  L  and  H  in the optimal solu-
tion such that  r(H ) =  ∑ i=1  

n    τ   i   if this is possible given the distribution of resources 
and  r(L) ≥  ∑ i=1  

n−1    τ   i  . The step structure of the function  D(r)  implies that if the distri-
bution of resources does not allow to set  r(H ) =  ∑ i=1  

n    τ   i  , then persuasion is unhelp-
ful and no messages should be sent. It also implies that  r(L)  should be set equal to   
∑ i=1  

n−1    τ   i   if this is possible given the distribution of resources, and as low as possible 
otherwise. ∎

Figure  2 below shows that setting   r H   =  ∑ i=1  
n    τ   i   if possible and setting   r L    as 

low as possible but not below   ∑ i=1  
n−1    τ   i   decreases expected social cost. When   r H   

=  ∑ i=1  
n    τ   i   and   r L   =  ∑ i=1  

n−1    τ   i  , the expected social cost is obtained on the Green curve 
at the point  E[r].  The expected social cost with mean posterior beliefs   r  H  ′   >  r H    and   
r  L  ′   >  r L    is higher and is obtained on the Black curve at the point  E[r].  Figure 2 also 
illustrates the reason that if it is impossible to set   r H   =  ∑ i=1  

n    τ   i  , then persuasion is 
ineffective.

The fact that   r L    should be set as low as possible given the distribution of resources, 
but not below   ∑ i=1  

n−1    τ   i  , raises the question of whether it may be beneficial to destroy 
resources in order to set   r L   =  ∑ i=1  

n−1    τ   i   when this is impossible given the distribution 
of resources. The answer to this question is, not surprisingly, negative.22

As illustrated by Figure 2 and elaborated further in the next section, if the mes-
sage  L  induces a posterior expectation   r L   >  ∑ i=1  

n−1    τ   i  , then the convexification of the 
function (as described by the Green curve)  D(r)  is necessarily only partial. The next 

22 Suppose then that  r(L)  is optimally set at a continuity point of  D (r)  . Decreasing it further necessitates the 
destruction of resources. We show that such destruction of resources is inefficient. The equation of the line that 
connects the points   (r(L), D(r(L)))   and   (r(H ), D(r(H )))   is

  y =   
D (r (H) )  − D (r (L) ) 

  __________________  
r (H)  − r (L) 

   ⋅ x + D (r (L) )  −   
D (r (H) )  − D (r (L) ) 

  __________________  
r (H)  − r (L) 

   ⋅ r (L)  .

If  r(L)  is lowered by a small  ε > 0 , then the expected amount of resources decreases from  r  to  r − εPr(L) , and 
the line of expected disutility connects the two points:  (r(L) − ε, D(r(L)))  and  (r(H ), D(r(H )))  is

  y =   
D (r (H) )  − D (r (L) ) 

  __________________  
r (H)  − r (L)  + ε

   ⋅ x + D (r (L) )  −   
D (r (H) )  − D (r (L) ) 

  __________________  
r (H)  − r (L)  + ε

   ⋅  (r (L)  − ε)  .

Algebraic manipulation shows that the height of the former line at the point where  x = r  is equal to the height 
of the second line at the point where  x = r − εPr(L) . It follows that the destruction of resources does not lower 
expected disutility.
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proposition characterizes the distribution of resources that permit complete convexi-
fication of the disutility function  D(r)  in the monotone case.

PROPOSITION 4: If   r 1   ≤  ∑ i=0  
m    τ   i  ≤ E[r] <  ∑ i=0  

m+1    τ   i  ≤  r K     for some  m ≤ n − 1  , 
then it is possible to achieve full convexification (  r H   =  ∑ i=0  

m+1    τ   i   and   r L   =  ∑ i=0  
m    τ   i  ) 

provided that

    ∑ 
i=0

  
m

     τ   i  ≥   
 ∑ k=0  

 k ′  −1    π k    r k   +  (1 − p)   π  k ′      r  k ′    
   ______________________  

 ∑ k=0  
 k ′  −1    π k   +  (1 − p)   π  k ′    

   ,

where   k ′   ∈ {1, …, K}  and  p ∈ [0, 1)  are the unique solution to

    ∑ 
i=0

  
m+1

    τ   i  =   
 ∑ k= k ′  +1  

K    π k    r k   + p  π  k ′      r  k ′      __________________  
 ∑ k= k ′  +1  

K    π k   + p  π  k ′    
   .

Otherwise, convexification is partial; either   r H   =  ∑ i=0  
m+1    τ   i   but   r L   >  ∑ i=0  

m    τ   i   or   
r H   <  ∑ i=0  

m+1    τ   i   and persuasion is altogether unhelpful.

Proposition 4 is a corollary of Lemma 2 in the previous section.

V. Constrained Convexification

In this section, we extend the analysis performed in the previous section for the 
monotone case to the general case. We explain the sense in which the problem is 
a constrained convexification problem and characterize the number of messages 

Figure 2. Optimal Solution in the Monotone Case (the green line generated by optimal messages 
 L  and  H  lies below the black line generated by messages   L ′    and   H ′    at  E[r] )

s1 + s2 + s3

s2 + s3

s3

E[r]rL′rL rH rH′
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needed for the optimal solution. However, we cannot provide an explicit solution of 
the problem as in the monotone case.

Devoting all the available resources to deterrence on the set of neighbor-
hoods  S ⊆ {1, …, N}  with no communication produces a  non-increasing 
 step-function social cost,

   D S   (r)  =  
{

 
 ∑ i∈ {1,…,N}   

 
     s   i ,

  
if r <  ∑ i∈S  

 
     τ   i ;

    
 ∑ i∈ {1,…,N} \ S  

 
     s   i ,

  
if  ∑ i∈S  

 
     τ   i  ≤ r,

    

that maps the amount of available expected resources  r  into social cost. If  r <  
 ∑ i∈S  

 
     τ   i  , then there are not enough resources to deter on the set of locations  S . In this 

case, drivers in all locations park illegally, and the social cost is   ∑ i∈{1,…,N}  
 
     s   i  . If on 

the other hand  r ≥  ∑ i∈S  
 
     τ   i  , then there are enough resources to deter on the set  S . 

In this case, drivers in  S  are deterred, and only drivers outside  S  park illegally. The 
social cost is   ∑ i∈{1,…,N}\S  

 
     s   i  .

It follows that the minimal social cost that can be achieved without persua-
sion, or without sending any messages, is given by the following  non-increasing 
 step-function:

  D (r)  =   min  
S⊆ {1,…,N} 

  
 
   D S   (r)  .

Identification of the set of locations  S  on which the minimum   D S  (r)  is obtained 
for any amount of resources  r  is a knapsack problem. The knapsack problem is 
an NP hard problem for which there exists a fully polynomial time approximation 
scheme (FPTAS) (Ibarra and Kim 1975).

In the monotone case, the steps defined by the social cost function  D(r)  became 
longer and lower, but this is not necessarily the case generally. Define the convexi-
fication of  D(r)  from below as

  conv D (r)  ≡ max  D ̃   (r)  ,

where the maximum is taken over all convex functions   D ̃  (r) ≤ D(r)  for all  r ≥ 0 . 
The convexification of  D(r)  is a piecewise linear, monotone non-increasing, con-
vex function. Denote the points on which  convD(r)  and  D(r)  coincide in the inter-
val  [0,  ∑ i=1  

N    τ   i  ] by   r [0]  ,  r [1]  , …,  r [I ]   , where  0 =  r [0]   <  r [1]   < ⋯ <  r [I ]   =  ∑ i=1  
N    τ   i  . 

Each pair of consecutive points   r [l ]   ,   r [l+1]    defines a linear segment of the function  
convD(r) . There is a finite number of such points because each such point must 
be a discontinuity point of the function  D(r)  and there is only a finite number of 
such discontinuity points. The number of steps of the function  D(r)  in any segment 
 [ r [l ]  ,  r [l+1]  ]  is given by the number of discontinuity points of  D(r)  in the segment 
 [ r [l ]  ,  r [l+1]  ] . See Figure 3 below.

If the distribution of resources imposed no constraints over the distribution of the 
posterior expectations  {r(m)} , except of course for the requirement that resources 
add up, or that

    ∑ 
m=1

  
M

    Pr (m)  ⋅ r (m)  = E [r]  ,
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then the optimal solution could have been obtained as the solution to the following 
(unconstrained) convexification problem:

    min  
 {Pr (m) } , {r (m) } 

  
 
   {  ∑ 

m=1
  

M

    Pr (m) D (r (m) )  :   ∑ 
m=1

  
M

    Pr (m)  = 1,   ∑ 
m=1

  
M

    Pr (m)  ⋅ r (m)  = E [r] }  

and would have required only two messages. As shown in Figure 4 below, the optimal 
solution would have involved sending only messages  L  and  H  with induced poste-
rior beliefs   r L    and   r H    that are equal to the consecutive two coincidence points that are 
such that   r [l ]   < E[r] <  r [l+1]   ,

23 with probabilities  Pr(H )  and  Pr(L) = 1 − Pr(H )  
that are such that  Pr(L) ⋅  r L   + Pr(H ) ⋅  r H   = E[r]. 

However, as explained in the introduction, the induced distribution of mean pos-
terior belief  {r(m)}  must be  second-order-stochastically-dominated by the prior 
distribution. This implies that the problem is given by the following constrained 
convexification problem:

    min  
 {Pr (m) } , {r (m) } 

  
 
   {  ∑ 

m=1
  

M

    Pr (m) D (r (m) )  :   ∑ 
m=1

  
M

    Pr (m)  = 1,   ∑ 
m=1

  
M

    Pr (m) r (m)  = E [r] }  

23 If  E[r]  is equal to one of the coincidence points, then the optimal solution requires just one, or no messages 
at all. 

Figure 3. The Functions  D(r)  and  convD(r)  in the General Case

D(r)

rr[2]r[1]r[0]
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subject to the constraint that the induced distribution of mean posterior belief  {r(m)}  
is  second-order-stochastically-dominated by the prior distribution.

This additional constraint implies that sometimes three or more messages may 
generate a lower value of the objective function than just two messages. This is 
illustrated in the next example.

Example 3: A city has two locations with the thresholds   τ   1  = 1/2  and   τ   2  = 1  
and social disutilities   s   1  = 1/4  and   s   2  = 1 . There are three states, with resources   
r 1   = 0 ,   r 2   = 1/2,  and   r 3   = 1  and probabilities   π 1   = 1/4 ,   π 2   = 1/2,  and   
π 3   = 1/4 , respectively. Clearly, as shown by Figure 5 below, optimal deterrence 
with two messages  L  and  H  (such that  r(L) < r(H) ) requires that  r(H ) = 1  
and  r(L)  is set as low as possible, which in this case implies  r(L) = 1/3 ,  
Pr(L) = 3/4,  and  Pr(H ) = 1/4 . The value of the objective function in this case 
is  3/4 ⋅ 5/4 + 1/4 ⋅ 1/4 = 1 . This is also the value of the objective function with 
no messages at all or just one message. But with three messages that reveal the state 
of the world, the expected value of the objective function is  1/4 ⋅ 5/4 + 1/2 ⋅ 1 + 
1/4 ⋅ 1/4 = 7/8 < 1 .

The next proposition bounds the maximum number of messages needed in order 
to implement the optimal solution.

Figure 4. Optimal Solution in the Unconstrained Case Involves Only Two Messages

D(r)

E(r)rL rrH
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PROPOSITION 5: Suppose that the expected amount of resources  E[r]  is an interior 
point of the segment [ r [l ]  ,  r [l+1]  ] . Then, the number of messages needed in order to 
obtain the optimal solution is no more than the number of steps of the function  D(r)  
in the segment [ r [l ]  ,  r [l+1]  ]  plus one. If the expected amount of resources coincides with 
one of the points   r [0]  ,  r [1]  , …,  r [I]   , then no messages or just one message is needed for 
the optimal solution.

PROOF:
Suppose that the expected amount of resources  E [r]   is an interior point of some 

segment  [ r [l ]  ,  r [l+1]  ] . An identical argument to the one used in the Proof of Proposition 3 
shows that no loss of generality is implied by restricting attention to a set of mes-
sages that induce posterior expectations that lie in the interval  [ r [l ]  ,  r [l+1]  ] . This is 
because any two messages  L  and  H  that induce posterior expectations  r(L) <  r [l ]   
<  r [l+1]   < r(H )  can be replaced by two messages   L ′    and   H ′    that are such that  r( L ′   ) 
=  r [l ]    and  r( H ′   ) =  r [l+1]    without affecting the probabilities of the other messages or 
their posterior expectations in a way that decreases expected disutility. And any two 
messages  L  and  H  that induce posterior expectations   r [l ]   ≤ r(L)  and   r [l+1]   < r(H )  
can be replaced by two messages   L ′    and   H ′    that are such that  r( L ′   ) = r(L)  and  r( H ′   ) 
=  r [l+1]    without affecting the probabilities of the other messages or their poste-
rior expectations in a way that decreases expected disutility. A similar argument 
shows that any two messages  L  and  H  that induce posterior expectations  r(L) <  a [l ]    

Figure 5. Three Messages Are Better than Two
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and  r(H ) ≤  r [l+1]    can be replaced by two messages   L ′    and   H ′    that are such that  r( L ′   ) 
=  r [l ]    and  r( H ′   ) = r(H )  without affecting the probabilities of the other messages 
or their posterior expectations in a way that decreases expected disutility.

There is no need to send two messages that induce the same posterior expectation 
because any such two messages   m i    and   m j    can be combined into one message that 
is sent with probability  Pr( m i  ) + Pr( m j  )  and induces the same expected posterior as 
 r( m i  ) = r( m j  )  without affecting any other probabilities or posterior expectations.

Finally, if the expected amount of resources coincides with one of the points   r [0]  ,  
r [1]  , …,  r [I ]   , then no messages or just one message is needed for the optimal solution 
because as implied by the preceding discussion, it is impossible to obtain a value of 
the objective function that lies below  convD(r)  . ∎

In recent papers, Doval and Skreta (2018) and Le Treust and Tomala (2019) show 
that the number of messages needed in order to attain the optimum in a Bayesian 
persuasion problem is smaller than or equal than the number of states.24 It follows 
that the bound on the number of messages identified in Proposition 5 can be tight-
ened and set at the minimum of the number of steps of the function  D  in the relevant 
interval and the number of states  K . Moreover, the next example attains this bound 
and thus proves it to be tight.

Example 4: Suppose that a city has  N  locations. The thresholds for deter-
rence are given by   τ   1  < ⋯ <  τ   N  . The number of states is  K = N . Suppose 
that the distribution of resources is given by   r 0   = 0 ,   r 1   =  τ   1  ,   r 2   =  τ   1  +  τ   2  , 
  r 3   =  τ   1  +  τ   2  +  τ   3  , and so on. Suppose that the thresholds for deterrence   τ   n   are 
increasing in  n  sufficiently fast so that in state  k  it is only possible to deter in neigh-
borhoods  1, …, k . Suppose that the social disutility of illegal parking is increasing in  
n  so that the function  D  has steps that become taller and longer, as in Figure 6 below.

The optimal policy in this example consists of full revelation of the state and in 
each state  k , allocation of resources to locations  1, …, k . To see that this is optimal, 
note that (i) the allocation rule is optimal because it makes the most efficient use of 
the available resources and (ii) if two different states are pooled together into one 
message, then it is possible to improve the value of the objective function by simply 
revealing the state instead. Suppose that message  m  is sent with probabilities  p  and   
p ′    in states  k  and   k ′   , respectively. This implies that message  m  generates a payoff of  
 D( r – ) , where   r –  =  (p  π k  /(p  π k   +  p ′    π  k ′    ))  ⋅  r k   +  ( p ′    π  k ′    /(p  π k   +  p ′    π  k ′    ))  ⋅  r  k ′     . If instead 
the city reveals the state, the expected payoff is   (p  π k  /(p  π k   +  p ′    π  k ′    ))  ⋅ D( r k  ) +  
 ( p ′    π  k ′    /(p  π k   +  p ′    π  k ′    ))  ⋅ D( r  k ′    ) , which is lower than  D ( (p  π k  /(p  π k   +  p ′    π  k ′    ))  ⋅  r k   +  
 ( p ′    π  k ′    /(p  π k   +  p ′    π  k ′    ))  ⋅  r  k ′    )   because of the structure of the function  D , as can be 
seen from Figure 6.25

24 Their results are established for constrained Bayesian persuasion problems. Here, no additional constraints 
beyond Bayes plausibility are imposed on the problem, so the number of messages needed is smaller than or equal 
to the number of states.

25 Kolotilin (2018) has a similar result. He shows that a policy of full revelation of the state is optimal if and only 
if for any two states  k  and   k ′    with resources   r k   <  r  k ′     , respectively, revelation of the state is preferable to pooling 
these messages together.
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It therefore follows that in this example, the number of messages in the optimal 
solution is  N = K .

Finally, we mention that as in the monotone case, the convexification of the func-
tion  D(r)  may be partial in the sense that the optimal solution may lie strictly above 
the function  convD(r) .

VI. Endogenous Distribution of Resources and Deterrence over Time

It is possible to endogenize the prior distribution of the amount of available 
resources in the following way. Suppose that the city employs  K  inspectors. Each 
inspector is allocated to a specific day and time, or to several time slots, depending 
on how many hours he is required to work per day or week. Each inspector shows up 
to each assigned time slot with probability  1 − ε , independently across the different 
inspectors.

Any assignment of inspectors to time slots generates a prior distribution of 
resources available in each time slot. It is then possible to optimize over these prior 
distributions, given that in each time slot, the city allocates the available resources 
and disseminates information optimally, as described above. The solution of such a 
problem provides a theory of enforcement operations.

It is also interesting to explore the allocation of enforcement resources over 
time. Cyclical allocations, where the same distributions are repeated on a daily, 
weekly, or monthly basis, can be addressed along the lines described above. Another 
possibility is where the state of the world evolves according to a Markov process. 

Figure 6. Full Revelation of the State
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 Ashkenazi-Golan et  al. (2021) solve this problem for the case with two states. 
Interestingly, they show that the optimal strategy is not myopic.

VII. Conclusion

Because Bayesian persuasion lowers social cost through convexification of the 
social cost function  D(r) , its usefulness obviously depends on whether  D(r)  is not 
already convex. The simplifying assumptions we imposed on drivers’ behavior 
imply that  D(r)  is a step function and so necessarily nonconvex. However, in prac-
tice,  D(r)  may well be a smooth function, and so the question is whether the  D(r)  
function that is likely to arise in practice is nonconvex. This is an empirical question.

To simplify, suppose there is only one neighborhood. Because parking illegally 
induces a binary bet (an individual who parks illegally is either sanctioned or not), 
the drivers’ expected utility from such a bet is independent of their risk attitudes. 
Namely, any two drivers who derive the same utility from parking illegally and 
being sanctioned and not, derive the same expected utility from the bet, regardless 
of the curvature of their utility function.26 Because expected utility functions are 
invariant to affine transformation, no loss of generality is implied by assuming that 
drivers’ utility from parking illegally and being sanctioned or not are one and zero, 
respectively.

Thus, whether a driver chooses to park illegally or not depends on the utility that 
the driver derives from parking legally. Each such utility from parking legally induces 
a threshold probability of sanction, above which the driver would be deterred from 
parking illegally. It is reasonable to suppose that the distribution of drivers’ utilities 
from parking legally is  bell shaped, which in turn implies a  bell-shaped distribution 
of the threshold probabilities of sanction above which drivers are deterred from ille-
gal parking. Denote the cumulative distribution of these thresholds by  F(r) . For any 
level of sanction or available enforcement resources  r , the proportion of drivers who 
are deterred by the sanction is given by  F(r) . Social cost,  D(r) , is proportional to the 
fraction of drivers who are not deterred by the sanction, or  1 − F(r) . If the distribu-
tion of thresholds is  bell shaped and has an expectation that is strictly between zero 
and one, then the cumulative distribution  F(r)  is  S-shaped. This implies that  D(r)  is 
nonconvex.

Holt and Laury (2002) famously described an experiment where individuals were 
required to choose between a relatively safe and a relatively risky binary bet, as 
the probability of failure varies from zero to one. If we interpret the probability 
of failure as the probability of a sanction, it is possible to interpret the choice of 
the safe and risky bets as legal and illegal parking. Holt and Laury (2002) found 
that the proportion of individuals who chose the safe bet,  F(r) , is indeed  S-shaped. 
This finding is echoed by Dohmen et al. (2011), who report on a large survey of 
individuals’ risk attitudes with respect to large risks. They find that the distribution 
of “tolerance for risk” in the population is bell shaped with a small mass of people 

26 Hence, there is no need to invoke the fact that many economists (cf. Rabin 2000) argue that given people’s 
risk attitudes over large bets, they should be nearly risk neutral with respect to smaller bets.
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with extremely low tolerance for risk. This, again, produces an  S-shaped cumulative 
distribution  F(r) .

The significance of an  S-shaped cumulative distribution function  F(r)  is that it 
indicates that a “critical level” of risk is needed to achieve a large effect and that 
smaller levels produce significantly less deterrence. This type of nonconvexity is 
necessary to make Bayesian persuasion useful.27

Our approach is also related to research in criminology about the effectiveness 
of what is known as “hot spots policing.” It is observed that urban crime is mostly 
concentrated in a relatively small number of “hot spots” locations, and so vigorous 
police enforcement in these hot spots is expected to increase overall crime pre-
vention (Braga and Bond 2008; Braga, Papachristos, and Hureau 2014; Blattman 
et al. 2019; Mohler et al. 2015). Because police presence attracts a lot of attention, 
sending a foot patrol or a police cruiser to a hot spot area is akin to revelation of the 
state of the world in the context of our model. This may indeed be optimal in some 
cases (cf. Example 4) but is not expected to be optimal in general (cf. the example 
in the introduction). As demonstrated in this paper, persuasion may be more effec-
tive if it is possible to “spread enforcement resources over an event that has a higher 
probability.” However, in the context of urban crime, it is not clear how it is possible 
to indicate that police is nearby without actually sending a patrol, which effectively 
amounts to a complete revelation of the state.

This suggests that Bayesian persuasion would be more suitable for deterrence 
of unwanted activity that is less likely to be displaced by display of enforcement to 
other locations (such as violent crime compared to opportunistic crime; see Braga, 
Papachristos, and Hureau 2014) and in those cases where it is not clear whether 
enforcement is on or off at any given moment so that it is possible to use communi-
cation to shape beliefs, as in the case of illegal parking, speeding to some extent, tax 
evasion, and  free-riding.

Of course, people are probably less than fully Bayesian rational and certainly, 
probably not as Bayesian rational as assumed in this paper. However, people in 
practice definitely respond to messages, even if they don’t understand exactly what 
they mean in terms of implied levels of expected enforcement. A local government 
that wants to exploit the power of using messages to help regulate behavior would 
probably not do badly by ensuring that the messages it uses are Bayesian optimal as 
described in this paper. The use of any other messages risks squandering the govern-
ment’s credibility or not maximizing the potential for deterrence.

REFERENCES

Alm, James, Betty R. Jackson, and Michael McKee. 1992. “Estimating the Determinants of Taxpayer 
Compliance with Experimental Data.” National Tax Journal 45 (1): 107–14.

Alonso, Ricardo, and Odilon Câmara. 2016. “Persuading Voters.” American Economic Review  
106 (11): 3590–3605.

27 In a paper about tax evasion, Kleven et al. (2011) show that threat of audit letters has a large effect on behav-
ior. They contrast their findings with those of Alm, Jackson, and McKee (1992), who found that when penalties and 
audit probabilities are set at realistic but low levels, their deterrent effect is quite small. This is consistent with the 
idea that a critical level of enforcement is needed to achieve deterrence.

http://pubs.aeaweb.org/action/showLinks?crossref=10.1086%2FNTJ41788949&citationId=p_1
http://pubs.aeaweb.org/action/showLinks?system=10.1257%2Faer.20140737&citationId=p_2


214 AMERICAN ECONOMIC JOURNAL: MICROECONOMICS FEBRUARY 2022

Ashkenazi-Golan, Galit, Penelope Hernandez, Zvika Neeman, and Eilon Solan. 2021. “Dynamic 
Bayesian Persuasion with Two States.” Unpublished.

Aumann, Robert J., and Michael Maschler. 1995. Repeated Games with Incomplete Information. 
 Cambridge, MA: MIT Press.

Becker, Gary S. 1968. “Crime and Punishment: An Economic Approach.” Journal of Political  
Economy 76 (2): 169–217.

Bergemann, Dirk, and Stephen Morris. 2019. “Information Design: A Unified Perspective.” Journal of 
Economic Literature 57 (1): 44–95.

Best, J., and D. Quigley. 2020. “Persuasion for the Long Run.” Unpublished.
Blackwell, David. 1953. “Equivalent Comparisons of Experiments.” Annals of Mathematical Statistics 

24 (2): 265–72.
Blattman, Christopher, Donald Green, Daniel Ortega, and Santiago Tobón. 2018. “Place-Based 

 Interventions at Scale: The Direct and Spillover Effects of Policing and City Services on Crime.” 
NBER Working Paper 23941.

Borel, Emile. 1953. “The Theory of Play and Integral Equations with Skew Symmetric Kernels.” 
Translated by Leonard J. Savage. Econometrica 21: 97–100. Originally published as “La Théorie 
du Jeu et les Équations Intégrales á Noyau Symétrique.” Comptes Rendus de l’Académie des  
Sciences 173: 1304–08, 1921.

Braga, Anthony A., and Brenda J. Bond. 2008. “Policing Crime and Disorder Hot Spots: A  Randomized 
Controlled Trial.” Criminology 46 (3): 577–607.

Braga, Anthony A., Andrew V. Papachristos, and David M. Hureau. 2014. “The Effects of Hot Spots 
Policing on Crime: An Updated Systematic Review and Meta-Analysis.” Justice Quarterly 31 (4): 
633–63.

Chalfin, Aaron, and Justin McCrary. 2017. “Criminal Deterrence: A Review of the Literature.”  Journal 
of Economic Literature 55 (1): 5–48.

Crawford, Vincent P., and Joel Sobel. 1982. “Strategic Information Transmission.” Econometrica  
50 (6): 1431–51.

Dohmen, Thomas, Armin Falk, David Huffman, Uwe Sunde, Jürgen Schupp, and Gert G. Wagner. 
2011. “Individual Risk Attitudes: Measurement, Determinants, and Behavioral Consequences.” 
Journal of the European Economic Association 9 (3): 522–50.

Doval, L., and V. Skreta. 2018. “Constrained information design: Toolkit.” Unpublished.
Dworczak, Piotr, and Giorgio Martini. 2019. “The Simple Economics of Optimal Persuasion.” Journal 

of Political Economy 127 (5): 1993–2048.
Eeckhout, Jan, Nicola Persico, and Petra E. Todd. 2010. “A Theory of Optimal Random Crackdowns.” 

American Economic Review 100 (3): 1104–35.
Eilat, R., and Z. Neeman. 2021. “Communication with Endogenous Deception Costs.” Unpublished.
Gentzkow, M. and E. Kamenica. 2016. “A Rothschild-Stiglitz Approach to Bayesian Persuasion.” 

American Economic Review 106 (5): 597–601.
Hart, Sergiu. 2008. “Discrete Colonel Blotto and General Lotto Games.” International Journal of 

Game Theory 36: 441–60.
Holt, Charles A., and Susan K. Laury. 2002. “Risk Aversion and Incentive Effects.” American 

 Economic Review 92 (5): 1644–55.
Ibarra, Oscar H., and Chul E. Kim. 1975. “Fast Approximation Algorithms for the Knapsack and Sum 

of Subset Problems.” Journal of the ACM 22 (4): 463–68.
Kamenica, Emir, and Matthew Gentzkow. 2011. “Bayesian Persuasion.” American Economic Review 

101 (6): 2590–2615.
Kelling, George L., Tony Pate, Duane Dieckman, and Charles E. Brown. 1974. The Kansas City 

 Preventive Patrol Experiment: A Summary Report. Washington, DC: Police Foundation.
Kleiner, A., B. Moldovanu, and P. Strack. 2020. “Extreme Points and Majorization: Economic Appli-

cations.” Unpublished.
Kleven, Henrik Jacobson, Martin B. Knudsen, Claus Thustrup Kreiner, Søren Pedersen, and Emman-

uel Saez. 2011. “Unwilling or Unable to Cheat? Evidence From a Tax Audit Experiment in 
 Denmark.” Econometrica 79 (3): 651–92.

Kolotilin, Anton, Tymofiy Mylovanov, Andriy Zapechelnyuk, and Ming Li. 2017. “Persuasion of a Pri-
vately Informed Receiver.” Econometrica 85 (6): 1949–64.

Kolotilin, A. 2018. “Optimal Information Disclosure: A Linear Programming Approach.” Theoretical 
Economics 13 (2): 607–35.

Lando, Henrik, and Steven Shavell. 2004. “The Advantage of Focusing Law Enforcement Effort.” 
International Review of Law and Economics 24 (2): 209–18.

http://pubs.aeaweb.org/action/showLinks?crossref=10.1016%2Fj.irle.2004.08.005&citationId=p_30
http://pubs.aeaweb.org/action/showLinks?crossref=10.1111%2Fj.1542-4774.2011.01015.x&citationId=p_15
http://pubs.aeaweb.org/action/showLinks?crossref=10.1086%2F259394&citationId=p_5
http://pubs.aeaweb.org/action/showLinks?crossref=10.1145%2F321906.321909&citationId=p_23
http://pubs.aeaweb.org/action/showLinks?crossref=10.1080%2F07418825.2012.673632&citationId=p_12
http://pubs.aeaweb.org/action/showLinks?crossref=10.3982%2FECTA9113&citationId=p_27
http://pubs.aeaweb.org/action/showLinks?system=10.1257%2Faer.p20161049&citationId=p_20
http://pubs.aeaweb.org/action/showLinks?system=10.1257%2Faer.101.6.2590&citationId=p_24
http://pubs.aeaweb.org/action/showLinks?system=10.1257%2Fjel.20181489&citationId=p_6
http://pubs.aeaweb.org/action/showLinks?system=10.1257%2Fjel.20141147&citationId=p_13
http://pubs.aeaweb.org/action/showLinks?crossref=10.3982%2FECTA13251&citationId=p_28
http://pubs.aeaweb.org/action/showLinks?crossref=10.1086%2F701813&citationId=p_17
http://pubs.aeaweb.org/action/showLinks?crossref=10.1007%2Fs00182-007-0099-9&citationId=p_21
http://pubs.aeaweb.org/action/showLinks?crossref=10.2307%2F1906946&citationId=p_10
http://pubs.aeaweb.org/action/showLinks?crossref=10.2307%2F1913390&citationId=p_14
http://pubs.aeaweb.org/action/showLinks?crossref=10.3982%2FTE1805&citationId=p_29
http://pubs.aeaweb.org/action/showLinks?system=10.1257%2Faer.100.3.1104&citationId=p_18
http://pubs.aeaweb.org/action/showLinks?system=10.1257%2F000282802762024700&citationId=p_22
http://pubs.aeaweb.org/action/showLinks?crossref=10.1111%2Fj.1745-9125.2008.00124.x&citationId=p_11
http://pubs.aeaweb.org/action/showLinks?crossref=10.1214%2Faoms%2F1177729032&citationId=p_8


VOL. 14 NO. 1 215HERNÁNDEZ AND NEEMAN: HOW BAYESIAN PERSUASION CAN HELP

Le Treust, Maël, and Tristan Tomala. 2019. “Persuasion with Limited Communication Capacity.” 
Journal of Economic Theory 184: 104940.

Lipnowski, Elliot, Doron Ravid, and Denis Shishkin. 2021. “Persuasion via Weak Institutions.”  https://
ssrn.com/abstract=3168103.

Mohler, G.O., M.B. Short, Sean Malinowski, Mark Johnson, G.E. Tita, Andrea L. Bertozzi, and P.J. 
Brantingham. 2015. “Randomized Controlled Field Trials of Predictive Policing.” Journal of the 
American Statistical Association 110 (512): 1399–1411.

Polinsky A. Mitchell and Steven Shavell. 2000. “The Economic Theory of Public Enforcement of Law.” 
Journal of Economic Literature 38 (1): 45–76.

Powell, Robert. 2007. “Defending against Terrorist Attacks with Limited Resources.” American 
 Political Science Review 101 (3): 527–41.

Rabin, Matthew. 2000. “Risk Aversion and Expected Utility Theory: A Calibration Theorem.” 
 Econometrica 68: 1281–92.

Renault, Jérôme, Eilon Solan, and Nicolas Vieille. 2016. “Optimal Dynamic Information Provision.” 
Games and Economic Behavior 104: 329–49.

Roberson, Brian. 2006. “The Colonel Blotto Game.” Economic Theory 29 (1): 1–24.
Sherman, Lawrence William, and David L. Weisburd. 1995. “General Deterrent Effects of Police 

Patrol in Crime ‘Hot Spots’: A Randomized, Controlled Trial.” Justice Quarterly 12 (4): 625–48.
Tambe, Milind. 2011. Security and Game Theory: Algorithms, Deployed Systems, Lessons Learned. 

Cambridge, UK: Cambridge University Press.

https://ssrn.com/abstract=3168103
https://ssrn.com/abstract=3168103
http://pubs.aeaweb.org/action/showLinks?system=10.1257%2Fjel.38.1.45&citationId=p_34
http://pubs.aeaweb.org/action/showLinks?crossref=10.1007%2Fs00199-005-0071-5&citationId=p_38
http://pubs.aeaweb.org/action/showLinks?crossref=10.1016%2Fj.jet.2019.104940&citationId=p_31
http://pubs.aeaweb.org/action/showLinks?crossref=10.1017%2FS0003055407070244&citationId=p_35
http://pubs.aeaweb.org/action/showLinks?crossref=10.1080%2F07418829500096221&citationId=p_39
http://pubs.aeaweb.org/action/showLinks?crossref=10.1111%2F1468-0262.00158&citationId=p_36
http://pubs.aeaweb.org/action/showLinks?crossref=10.1080%2F01621459.2015.1077710&citationId=p_33
http://pubs.aeaweb.org/action/showLinks?crossref=10.1016%2Fj.geb.2017.04.010&citationId=p_37


This article has been cited by:

1. Teck Yong Tan. 2023. Optimal transparency of monitoring capability. Journal of Economic Theory
209, 105620. [Crossref]

2. Cheng Li, Yancheng Xiao. 2023. Information design, externalities, and government interventions.
Journal of Public Economic Theory 84. . [Crossref]

3. Makoto Shimoji. 2022. Setting an exam as an information design problem. International Journal
of Economic Theory . [Crossref]

4. Makoto Shimoji. 2022. Bayesian persuasion in unlinked games. International Journal of Game
Theory 51:3-4, 451-481. [Crossref]

https://doi.org/10.1016/j.jet.2023.105620
https://doi.org/10.1111/jpet.12640
https://doi.org/10.1111/ijet.12368
https://doi.org/10.1007/s00182-021-00800-1

	How Bayesian Persuasion Can Help Reduce Illegal Parking and Other Socially Undesirable Behavior
	I. Model
	II. The Optimal Ratio Rule
	III. “Splitting”
	IV. The Monotone Case
	V. Constrained Convexification
	VI. Endogenous Distribution of Resources and Deterrence over Time
	VII. Conclusion
	REFERENCES


