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Abstract 

In this paper we try to answer the question of how one can determine the relative 
importance of the different attributes of a product. In order to answer this question a 
stopping problem model is constructed. An agent faces a sequence of i.i.d, multi-attribute 
products. From each product, he can observe only one attribute. At  each period the agent 
has to decide whether he wants to stop and take the best product he has observed so far, or 
whether he prefers to continue the observation process and observe an attribute of the next 
product in the sequence. We find the optimal observation policy and the conditions under 
which it observes only one attribute, rendering it the most ' informative'. When the 
sequence of products is finite, second-order stochastic dominance characterizes the case in 
which an optimal strategy observes only one attribute in the sense that if it holds between 
any two random variables induced by the expected utility given an attribute, it is never 
optimal to observe the 'dominating' attribute. When the sequence of products is infinite, 
observing one attribute only is always optimal. The seeming discrepancy between finite and 
infinite horizon models vanishes for a sufficiently large horizon, making the infinite horizon 
optimal attribute the one chosen for a long period in finite horizon problems as well. 

Keywords: Search; Product attributes; Consumer preferences; Stopping problem; Learning 

1. Introduction and summary 

O n e  a p p r o a c h  in c o n s u m e r  t heo ry ,  first p r e s e n t e d  by  Lancas t e r  (1966),  views 

p r o d u c t s  as bund les  of  a t t r ibu tes .  C o n s u m e r s '  p r e fe rences  are  accord ing ly  def ined  

ove r  the  set of  d i f fe ren t  comb ina t i ons  of  a t t r ibu tes .  C o n s u m e r s '  p r e f e r ences  ove r  

p r o d u c t s ,  r a the r  than  a s sumed  as a p r imi t ive  of  the  theory ,  a re  d e t e r m i n e d  by  the  

d i f f e ren t  c o m p o s i t i o n  and  magn i tude  of  p roduc t s '  a t t r ibu tes .  
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In this paper we try to develop a systematic way of answering the question: 
What makes a certain attribute important? In order to address this question we 
introduce the following decision problem: a rational decision-maker is facing a 
sequence of multi-attribute products. He can choose one product,  preferably the 
best, from this sequence. However,  he is restricted by the following information 
constraint, namely, he can observe only one attribute from each product in the 
sequence. Now, since observing different attributes may yield different infor- 
mation, the decision-maker has to decide in what kind of information he is most 
interested. As we shall see, it may well be the case that the optimal attribute to 
observe will vary across time and history. In the sequel, we shall identify 
necessary and sufficient conditions under which there will be only one such 
attribute. 

An example illustrating this decision problem is the following. Suppose that one 
is interested in buying a used car. She visits several car dealers which in turn make 
her an offer. However ,  for various reasons (e.g. the dealer does not have time, 
there are more customers waiting to examine the car, these are the prevailing 
social norms), she can have only a limited amount of time in which she can test 
each car. After visiting each car dealership, she has to decide whether she wants 
to buy the suggested car or whether she is interested in observing yet another car. 
At  any stage, she can come back and buy a car that she has already observed 
before.  Her  problem, then, is to decide which attributes of the car should she be 
most interested in examining. Is there one attribute that provides the best 
information about cars or should she examine a different attribute at each time, 
maybe as a function of the outcome of previous observations. 

Another  example is the following. A university department is interested in 
hiring a young assistant professor. It summons up candidates and interviews them 
one at a time. After reviewing each candidate the department has to decide 
whether  to make an offer to the strongest candidate so far or to continue and 
interview new candidates. We can think of the candidates as having two attributes, 
their research ability and their teaching skills. Before reviewing each candidate, 
the department  has to decide which attribute of the two it wishes to examine. In 
this example, the information restriction imposed by the model seems more 
natural. It is customary that the department flies the candidate and hosts him for a 
couple of days during which only limited information can be gathered on the 
candidate. Furthermore,  it is not customary to interview a candidate twice. 
Therefore ,  the department 's  decision can only be based upon partial information. 
The question is what partial information is more useful. 

To  put it in the context of a stopping problem, we try to understand the 
dynamic nature of what makes a certain attribute interesting, where 'interest'  is 
defined implicitly by the optimal observation policy. However ,  this analysis can be 
thought of as having descriptive implications as well, namely, what might appear 
at a particular moment  as an interesting attribute to observe may indeed be an 
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optimal one. In other words, when people are confronted with problems of this 
kind what may seem at first as indeterminate and inconsistent behavior may 
actually be the result of unconscious optimizing rather than sheer arbitrariness. 
Furthermore,  this approach can be justified on an evolutionary basis. More 
generally, the notion of a decision-maker who unconsciously chooses optimally 
seems more plausible to us than that of a (boundedly) rational decision-maker 
who is fully aware of the model and calculates an optimal strategy. 

Similar models of decision processes were considered in psychological litera- 
ture. These models (see, for example, Coombs, 1964; Fishburn, 1968; and 
Tversky, 1972), concern themselves with the following problem. A decision- 
maker faces a set of different products (alternatives) from which he has to choose 
only one. They propose the following decision rule: the decision-maker chooses 
one attribute which is either fixed beforehand or determined by a lottery. All the 
products (alternatives) that do not rank highly enough when this attribute is used 
as the criterion for ranking are disqualified. This process is repeated until only 
one product (alternative) is left, and this last product ends up being chosen. Yet, 
whether the particular way of choosing the attributes is deterministic or prob- 
abilistic, the way in which they are chosen is left implicit in these papers. 

As mentioned above, bounded perception is reflected in our model in the 
assumption that from each product only one attribute may be observed. While this 
extreme assumption may be too restrictive (and is made in our model mainly for 
tractability reasons) we find that it does not make the model much less realistic. 
Indeed, very often products are way too complex for the consumer to observe all 
their attributes, whether a used car or a job applicant is concerned. Furthermore, 
the cost of having an observation can be very high considering time and other 
resources, rendering more than one observation per product virtually impossible 
(for instance, in the problem of interviewing job applicants). In addition, the 
model allows to lump several attributes together into one attribute. For example, 
in the recruiting-new-faculty example, applicants are questioned about their 
former studies and publications and are required to give a research seminar, 
all of which can be redefined as a 'research' attribute, but usually are not 
tested for their performance in front of an ordinary class (the 'teaching' attri- 
bute). 

Yet another justification for the bounded perception model stems from 
biological evidence. Some natural mechanisms force a limitation very similar to 
the one we have described. The human eye, for instance, can observe only a 
limited range in a certain time, although one can choose where one wants to look. 

We characterize the optimal observation policy in the case when the sequence 
of products is finite (the finite horizon problem) and in the case where the 
sequence of products is infinite (the infinite horizon problem). In particular, we 
identify necessary and sufficient conditions under which only one attribute is 
observed by the optimal strategy, rendering it the most 'informative' and 
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simplifying the optimal strategy. We present two examples that help to clarify and 
motivate the main results of the paper. The first example shows a problem where 
an optimal strategy observes two attributes, whereas in the second example, one 
only one attribute is observed by the optimal strategy. 

Example 1. Suppose that the decision-maker is facing two products, that is, it is a 
two-period problem. Each product has two attributes p and q. Each attribute may 
take the values 0 or 1 according to the following distributions which are assumed 
to be independent. 

X p = { ~ '  withprobability 3 

, with probability ¼, 

x q  = {01, with probability ¼, 
, with probability 3 .  

The decision-maker's utility function is U ( X  p,  X q) = X p + X q and it is dis- 
counted by/3 < 1. Thus, observing attribute p yields an expressed utility value of 
E[U(X p, X q) IX p = X  p] = 3  AffxP and observing attribute q yields an expected 
utility of E [ U ( X  p, X q) [ X q = x q] = ¼ + x q. The analysis of the problem is carried 
out by backward induction. Computation shows that the optimal strategy (for 
/3/>2) is to observe attribute p first. In the case x p = 1, the optimal strategy is to 
stop and take the product. If, however, x p = 0, the optimal strategy is to continue 
and observe attribute q of the second product. If x q = 1, the optimal strategy is to 
take this product. However, in the case x q = 0, the optimal strategy is to go back 
and take the previous product (the one with x p -- 0). As we shall see later, in the 
infinite horizon problem, for/3 > 16 the optimal strategy always observes attribute ~Tq 
p,  regardless of previous realizations. 

The economic interpretation of this example can be presented as follows. The q 
attribute has a large probability of success, much larger than that of p. However, 
a 'success' in the p-dimension guarantees a higher conditional expected payoff. In 
the first period the optimal strategy is to bear the risk and observe attribute p. If 
the high value is observed, the optimal strategy is to stop. If the low value is 
observed, the optimal strategy is to move over and to observe attribute q in the 
hope that it, at least, will guarantee a better than average conditional expected 
payoff. If it does, the optimal strategy takes this product. Otherwise, there is no 
choice but to take the first product. Since X p is more likely to be zero then X q, 

the q attribute functions as some sort of 'insurance'. Loosely, the fact that X q is 
'safer' than X p allows the decision-maker to bear risk in the first period, knowing 
that unless a 'disaster' occurs (i.e. with a small probability) he is covered. On the 
other hand, when the sequence of products is infinite the decision-maker can 
always choose to observe the more risky attribute p. In the case of 'failure', he 
can always continue and make another observation. 
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Example 2. Again, we present a two period problem. As before, each 
product has two attributes p and q with the following independent distribu- 
tions, 

X p = { O  3 ' withpr°bability 1 ,  
, with probability ½, 

( 1 X q = 1, with probability~, 
1 2, with probability ~.  

As before, the utility function is U ( X  p, X q) = X ~ +  X q and is discounted by 
/3 < 1. Now, observing attribute i E  {p, q} yields an expected utility value of 
E[U(X p, X q) I X i = x i] = ~ + x i. Again, analysis of the problem is carried out by 
backward induction. The optimal strategy (for the case where/3/> ½) is as follows. 
First, observe attribute p. In the case when x p = 3 is observed, stop and take the 
product. In the case when x p=  0 is observed, the optimal strategy is to make 
another observation. It does not matter whether attribute p or q is the one 
observed, either one will give the same expected utility value. In this example an 
optimal strategy can be restricted to observing only attribute p. In this sense, 
attribute p is more interesting than attribute q. 

Thus, we see a major difference between the two examples. In Example 1 an 
optimal strategy observes both attributes, while in Example 2 an optimal strategy 
can be restricted to observe only one attribute. |n Section 3 we generalize this 
distinction and characterize it in terms of the relationship between the dis- 
tributions of the attributes. 

We show that in the finite case, for any time horizon N, a necessary and 
sufficient condition for an optimal strategy to observe only one attribute is that 
the random variable induced by the expected utility given this attribute is 
second-order stochastically dominated by the random variables corresponding to 
all other attributes. At first sight, it might appear unintuitive that the dominated 
variable is chosen by the optimal solution. Recall, however, that for a random 
variable to be second-order stochastically dominated implies that it reveals more 
information and that the decision here is what attributes to observe rather than 
what random variables to consume. 

By contrast, in the infinite horizon case observing one attribute only is always 
optimal, regardless of past realizations. We prove this result and characterize the 
infinite horizon optimal attribute in Section 4. Consequently, when the finite and 
infinite horizon optimal strategies differ, the latter fails to be myopically optimal. 
Namely, there are cases in which, if we consider only a one-period future, the 
optimal infinite horizon strategy will be strictly sub-optimal. In Section 4 we show 
that the apparent discrepancy between the finite and infinite horizon optimal 
strategies vanishes asymptotically. Although in the finite horizon case one can 
always construct examples where every optimal strategy may decide to observe 
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two attributes (or more), the probability that this event actually occurs ap- 
proaches zero as the horizon tends to infinity. 

Therefore, it turns out that what makes an attribute attractive involves more 
than just 'being informative' in the sense of being stochastically dominated. 
Attractive attributes are, in the long run, those that have the possibility of pulling 
the whole product assessment sharply upwards, no matter how small is the 
probability of that occurring at any given stage. 

The problem addressed in this paper relates to the search literature and to the 
secretary and multi-armed bandit problems. The similarity between the problem 
studied in this paper and an ordinary search problem (for a survey of search 
literature, see McMillan and Rothschild, 1992) is due to the fact that a search for 
the optimal product is taking place and once a good enough product is found, the 
search stops. The difference lies in the motivation for the search. In this paper we 
'search' for the attribute that will convey the best information so that we can 
conduct our (real) search for the best product optimally. As a result, there is no 
'optimal attribute' that we search for; rather, the most informative attribute may 
vary along time and history. 

The main differences between the problem presented in this paper and the 
secretary problem (see, for instance, Chow et al. , 1971) is that here we impose an 
information constraint on the decision-maker. He can observe only one attribute 
of each product and, indeed, his problem is to decide which one. By contrast, in 
the secretary problem this problem does not arise since no information restriction 
is imposed. Another important difference is that the search strategies in the 
secretary problem are restricted to be without recall. Namely, one cannot call 
back a secretary that has been turned down. 

Lastly, in the multi-armed bandit problem (see, for instance, Berry and 
Fristedt, 1985), generally, several distributions whose parameters are unknown 
are given. The problem is to maximize the sequence of payoffs obtained from 
these distributions. The problem, then, is to identify the 'best' distribution 
through experimentation. The difference between a multi-armed bandit problem 
and the problem presented here is that here there is no need for experimentation 
because all the parameters are known a priori. In this respect, the problem 
presented here is a degenerate bandit problem. 

The general structure of the paper is as follows. In Section 2 we present the 
model. In Section 3 we deal with the finite horizon case. We present the optimal 
strategy and characterize the case in which it can be restricted to observe only one 
attribute in terms of second-order stochastic dominance. Finally, in Section 4 we 
handle the infinite horizon case and demonstrate that observing only one 
attribute is optimal. We explain the relationship between the finite and infinite 
horizon cases by showing the continuity of the finite horizon optimal strategy 
at infinity. 
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2. The model  

Let X1, X 2 . . . .  denote a sequence of i.i.d, random variables, Xn:O---> R k for 
n/> 1, which represent multi-attribute products. Each product in the sequence is 
represented by a vector of k random variables Xn = ( X l n ,  . . .  , X n )  X n .  ~-~...._~ 

which are interpreted as the products' attributes. The preferences of the decision- 
maker over the products are given by a non-negative, bounded and continuous 
von Neumann-Morgenstern utility function, U:Rk---> [0, M], which is discounted 
by 0 < / 3 < 1 .  

The information restriction imposed on the decision-maker is that he can 
observe only one attribute of each product he is facing. We denote the attribute of 
the nth product that the decision-maker observes by an E { 1 , . . .  ,k}.  The 
objective of the decision-maker is to choose the product that maximizes his 
preferences subject to his information restriction. Thus, the decision-maker 
wishes to select, if possible, the product that maximizes E[U(X t . . . . .  X ~) IX a = 
xa], where a denotes the ath attribute which the decision-maker is free to choose 
himself. Obviously, without the information restriction, the objective of the 
decision-maker would have been to choose the product that maximizes 
U ( X  1 . . . .  , X k) rather than the one that maximizes  E [ U ( X  1 . . . . .  x k )  I x  a = Xa]. 
Thus, the k random variables X i, i E { 1 , . . . , k } ,  yield k random variables 
E[U(X) I X/] :/2 ~ [0, M] whose realizations are the actual objects among which 
the decision-maker chooses. For each i E { 1 , . . . , k } ,  we denote Z i=- 

E[U(X) IXi]. In words, Z ~ denotes the expected utility that the decision-maker 
derives from a product whose ith attribute he has observed. Since the value of the 
ith attribute is a random variable, so is Z i. Let G/(-), i E {1 . . . . .  k}, denote the 
cumulative distribution function of Z i and let z ~ denote a realization of Z g. 
Note that while the X~'s did not relate to each other in any special way, for 
any i, j E { 1 , . . . ,  k}, E [ Z  i] = E[Zi]. This observation is an immediate con- 
sequence of the fact that for any two random variables A and B, E[E[A I B]] -- 
E[A]. 

The decision-maker is going through the following observation procedure. He 
goes through the sequence of products X1, ) ( 2 , . . . .  From each product X, he 
observes one attribute an, until he decides to stop. When he decides to stop, he 
takes the best product he has seen so far in the sequence (subject to his 
information restriction). We denote the decision-maker's utility from the best 
product seen up to stage n by Yn. Notice that Yn is actually the reservation value 
of the decision-maker after observing the nth product in the sequence. Namely, 
the decision-maker can guarantee to himself a utility value of Yn by stopping the 
observation procedure and taking the best product so far. Thus, the observation 
procedure yields a sequence of random variables Y0, I"1, }12, • • - , where }70 --- 0, 
that is, the decision-maker has the choice of not observing any product what- 
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soever and getting a utility value 0, and where for n>~l ,  Yn=[3 n 

m a x , ~ l  ...... ~(ZT'} I. 
The introduction of the Yn's allow us to describe this problem as a stopping 

problem.  At  any time n, the decision-maker has to decide whether  to stop the 
observat ion procedure and get a utility value of yn, which denotes the realization 

of Yn, or to continue and observe the realization of the an+ 1 attribute of the 
n + l th  product.  

In order  to describe this problem as a dynamic programming problem,  we need 
to specify a states space, an actions space, a transition function and a payment  
function. We denote the states space by S=-Q+ U {0} with the following 
interpretat ion.  In period n, or after n products have been observed,  a state 

a t s~ E S\{0} stands for s~ = max,e~l ...... ~{z t }, or  s n = y n / l ~  n. That  is, it represents 
the utility value of the best among the n products that have been observed so far 
net of the discounting. 0 is an absorbing state, denoting the end of the observation 
process. Sometimes,  we shall denote  the state succeeding s by s'. Notice that 
knowing the state does not imply knowing the history of the process nor the 

number  of periods that have passed since the observation procedure began. 
However ,  it contains all the relevant information for designing an optimal 
strategy. 

The  actions space is denoted by A - {1 . . . . .  k, Stop}. At each state s E S, the 
decis ion-maker  chooses an action which may either be to observe an attribute 
a E { 1 , . . . ,  k}, or to Stop, that is, to terminate the observation procedure,  and 
take the best product observed so far. 

We denote the transition function by q: S × A---~ F(S) .  The transition function, 
given a state and an action, describes the distribution of states which follows. F(S)  

denotes the family of cumulative distribution functions over  the states space S. 

q(s, a) = 0 with probabili ty 1 if s = 0 or a = Stop. Otherwise,  that is, when s ~ 0 
and a E {1 . . . . .  k}, 

O, S ' ~ S ,  

Go(s') 
q(s ,a )  = " l - - ~ a ( S ' )  ' S < S ' .  

Notice that as long as the observation process continues s ' />  s, that is, the state is 
always (weakly) ' improving '  after each observation regardless of which attribute is 
the one observed. 

We denote  the immediate  payment  function by r :S x A × S---> E. The payment  
function describes the immediate  payoff  to the decision-maker given that the 
observat ion process is in state s, action a is chosen, and the resulting state is s ' :  

1 Notice that this formulation allows us to describe a finite sequence of products as well. When the 
product sequence is of length N, Z/-= 0 for all t > N. 
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r(s' a'  s ' )  = { s , s # ~J' a = S t ° p '  s '  = O . 

The objective function of the decision-maker is then 

max E [ ~  n F ( s n , a n + l ,  Sn+a)] ,wheres0 = 0 
al,a 2 .... n=0 • 

o 

We are interested in finding an optimal strategy (policy, or rule, interchangeab- 
ly) for this decision problem. A strategy for this decision problem should tell us 
what we should do in every period: stopping and taking the best product so far or 
continuing by observing an attribute of the next product. Any such strategy 
induces a random variable which is referred to as a s topp ing  rule. Formally, a 
s topp ing  rule is a random variable ~-= (t; a l , . . . ,  a,) such that 
• t is a random variable denoting the stopping time. 
• a I . . . .  , a, are the random variables denoting the attributes observed until the 

stopping time t. 
• At  any time n, the decisions (namely, whether t stops and if not a ,+ l )  must be a 

function of what is known at that time. 
We denote the value of the objective function of the decision-maker when he 

uses ~- as his stopping rule by Yr- Sometimes it will be more convenient to use a 
different notation, namely we denote the expected value of the objective function 
of the decision-maker when he faces a sequence of N products, uses z as his 
stopping rule, is currently in state s, and have already observed n products, by 
Vn,N(T)(S ) .  When the sequence of products is infinite, we write V,=(T)(s ) .  The 
decision-maker's problem then is to find a stopping rule ~- that will maximize 
E[Y~] or V0,u(r)(0 ). In the following two sections we describe the optimal 
observation policy for the cases where the decision-maker faces a finite sequence 
of products and for the case where the sequence of products is infinite. 

3. The  finite hor izon problem 

When the sequence of products is finite, the number of products that have not 
been observed yet is of crucial importance in determining the optimal strategy. 
The analysis is carried out by backward induction. First, the last period, or the 
period in which the last product is observed, is analyzed. Then,  the next to last 
period situation is analyzed given the results of the previous analysis. In much the 
same way, in each period, the analysis is carried out when the results of the 
actions taken are known in terms of the distribution over states in the following 
period. 

Suppose that the decision-maker is facing a finite sequence of products X 1, 
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X 2 . . . . .  X N. Before we compute the optimal strategy, we need to establish some 
more notation. Let  

VN=-- YN = [3NsN 

be the random variable denoting the reservation value after observing the last 
product  N. 

F o r 0 ~ < n ~ < N - l ,  let 

Oin+ l(Sn, Z i) ~ /3"+ ' . max{s,,  Z i } 

be the random variable denoting the value of the objective function after n 
products have already been observed, the current state is s , ,  and the ith attribute 
of the n + l th  product is observed. 

i 
Un+l(Sn) = m a x  {E[Un+I(Sn, z i ) ] }  

i E { l  . . . . .  k} 

denote  the expected value of the objective function in the n + l th  period when 
the decision maker observes the best attribute and when the current state is s,.  
Finally, let 

V, ~- max{Y,, Uo+l(Sn) } 

denote  the expected value of the objective function in the nth stage. 
Notice that for all 0 <~ n ~< N - 1, 

U,+,(Sn) = E[V,+I Is,] = E[Vn+ 1 I v . ] ,  

and 
V, -= max{Y,, U,+1(s,) } = max{fl"Sn, U,+l(S,) } . 

The sequence of V,'s incorporates an optimal stopping rule. For each n, V, 
expresses the expected value of the objective function when the optimal attributes 
a ~ , . . . ,  a ,  have been observed and the decision whether to stop or not was made 
optimally. The following proposition formalizes this claim. 

Proposition 1. The optimal observation policy ~'~v = (t*; a~ . . . . .  a**) is defined as 
follows, t* =- min{0 ~< n ~< N I -< " * U.+l(s.)  ~ f l s n }  and for  n < t*, a. is the attribute 

i that maximizes E[U.+I(s . ,  zi)] .  

Proof. We show that ~'N is the optimal stopping rule by showing that for any other  
stopping rule ~-= (t; a l , . . . ,  at), E[Y.] ~< E[Y.;4] = V  o. For any stopping rule r 
define a~(N)---E[Y~], c t~ (n ) -~E[Y . l~ t<n}]+E[V . l { t~} ]  for l < - n < N ,  and 
a,(O) = E[V0] = V o. Notice that cry(n) is the expected utility associated with a 
stopping rule that coincides with r until period n, and coincides with ~'N after- 
wards, yielding a utility of V,. Recall that Y0---O; hence, V 0 = max{Y0, UI(O)} 
is a constant. 

The proof  consists of two steps. (1) We show that for any stopping rule % ct(n) 
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is a decreasing sequence in n, and thus V 0 is a bound for the value of the objective 
function. And (2) we show that a~;~(n) is a constant sequence, and thus ~-~ is 
optimal since E[Y~;~] = a~;~(N) = a~;~(O) = V o. 

To prove (1), observe that a.(n - 1) = E[Y..  l{ t<n_l}  ] + E[Vn_ 1 • l{ t~n_l}  ] a n d  
a.(n)  = E[Y~. l{ t<n_l}  ] + E[Y~- l{ t_n_l}  ] + E [ V  n • l{t~>n} ]. We show that a.(n - 
1) I> a.(n)  by showing that E[Y~. 1(,=. 1~] + E[V. .  l{t~n}] ~< E[V n 1" 1{,~.-1}]. 
Notice that by the definition of Vn_l, E [ Y n _  1 • l{t=n_l} ] ~ E[Vn_ 1 " l{t=n_l} ]. Since 
for any two random variables A and B, E[E[AIB] ]  = E [ A ] ,  E [ V . . I ( , ~ . ) ] =  
E[E[V. • I~,~.~]IYo_I]. In period n - 1, Yn-l is realized and the decision whether 
to stop or not is made. Thus, it becomes known whether the stopping time t is 
greater  or equal to n or not. Formally, this means that the random variable 1 (t~.~ 
is measurable with respect to I1.-1, and therefore E [ E [ V n . I ( , ~ n ) ] I Y  ~ 1] = 

E[E[V.[Y._I] . I ( ,>~.)] .  Now, since Un(Sn_l) = E [ V n [ S n _ l ]  = E[V . [Y ._ I ] ,  
E [ E [ V . [ Y . _ I ]  • 1(, ~ ~]  = E[U.(s~_I)  • l { t  ~> n}] ~ E [ V n - 1  " l { t  ~ n}] by the 
definition of 11._ 1. Therefore ,  E[Y~ • 1{t=._i}  ] + E [ V  n • l{t>~n}] ~ E[Vn_  1 " 

l{ t=n-1}]  + E[Vn-1  " l{t~n}J = E[Vn-1  " l{t  /> n -- 1}], and (1) is proved. 
Next,  we show that (2) holds. We do this by showing that the inequalities in (1) 

are satisfied as equalities for z~v. By the definition of * t* z u, is the first time in 
which the maximum between I1. and U.+l(s . )  is obtained on I1.. Therefore ,  
under  * t* _ = _ z N, = n - 1  implies V n 1 Y~ 1 and therefore E[Y._ 1 l(t.=~_l~] = 
E[V._ 1 l(t,=~_l~ ]. t * ~ n  implies that V ~ _ I = U . ( s . _ ~ )  and therefore E[V~ • 

1(,.~.)] = E[E[V. • l{ t .~n)][Yn_l] = E[EIV. I Y . _ I ] "  l{ t .~n}]  = E[U.(s._~) • 
1(¢.~.)] = E[V._~ • 1(,.~.~]. This completes the proof of Proposition 1. [] 

Notice that the stopping rule zfv satisfies the following two properties. The first 
one is that it is stationary. At each point in time its decision is independent of the 
number  of products that have been observed so far. The second property is that it 
is myopic. At  any stage in the observation process the decision whether to stop or 
not is made by comparing the current reservation value with the expected utility 
from making another  single observation. Furthermore,  the attributes that ~'~v 
chooses to observe are those that maximize the one observation ahead expected 
utility. 

We now show that second-order stochastic dominance between the zg's 
characterizes the case in which an optimal strategy can be restricted to observe 
only one attribute. Namely, if there exists an attribute p such that Z p is 
second-order stochastically dominated by all the other Zi 's,  then there exists an 
optimal strategy that will choose to observe only attribute p. If, on the other 
hand, there is no such attribute, every optimal strategy will observe at least two 
attributes under some continuity assumptions. Before turning to the statement 
and proof  of this result, we present the definition of second-order stochastic 
dominance as it appears in Rothschild and Stiglitz (1970). 
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Definition. Suppose that P and Q are two random variables with a bounded 
support [0, M], and with the corresponding cumulative distribution functions, 
Fp(.) and FQ(-), P is second-order stochastically dominated by Q if 

M 

0 

and 

? 
(ii) J (Fe(x) - Fo(x)) dx >! 0 for all 0 <~ m < M .  

0 

Notice that since the Z~'s are non-negative E[Z~J=f0 M (1 -G i (x ) )dx  for all 
i E { 1 , . . . , k } .  This, together with the fact that E[Z ~] = E[Z j] for all i, j ~  

. . . .  k}, implies that fo G~(x) dx {1, M = fo Gj(x) dx for any i, j ~  { 1 , . . . , k } ,  and 
thus (i) above is satisfied for any Z i and Z j. Regarding the examples given in the 
introduction, in Example 1 there is no second-order stochastic dominance 
between Z p and Z q and in Example 2, Z p is stochastically dominated by Z q. 

Theorem 2. When N >~ 2, there exists an optimal strategy that observes only 
attribute p if  Z p is second-order stochastically dominated by Z g for all i ~ 
{ 1 , . . .  , k}. Conversely, if the cumulative distributions o f  the Zi's i E {1 . . . . .  k}, 
are strictly monotone and differentiable, and an optimal strategy observes attribute 
p only, then Z p is second-order stochastically dominated by all the other Zi's. 

/ i max(s,z i} for all 0 ~ n ~ < N  and i E  Proof.  'If': Recall that U,(s, z ) = ~" 
(1, . , k } .  i . .  U,(s ,  z ) is a convex function of z i because maximum is a convex 
function. We use a theorem from Rothschild and Stiglitz (1970) that establishes 
the following fact. If a random variable A is second-order stochastically domi- 
nated by a random variable B, then for every convex function f(-), Elf(A)] 

i Elf(B)]. From applying this result to U,(s, zi), it follows that E[UP(s, ZP)] >- 
E[Ui,(s, Z/)] for all i : { 1 , . . .  ,k}, s E [ 0 ,  M] and l < ~ n ~ N .  Hence, in every 
period n, observing attribute p is preferable to observing any other attribute i. 

Conversely, we demonstrate that if there is no second-order stochastic domi- 
nance between any two attributes i, j E { 1 , . . . ,  k}, then observing attribute i in 
the last period in superior to observing attribute j with a positive probability and 
vice versa. 

We show that J'o (G~(x) - Gj(x)) dx > 0 implies E[U~v(m, Z/)] > E[U~v(m, Zi)]. 
foMGi(x)dx=fo M Gj(x)dx and therefore f o  ( G i ( x ) - G j ( x ) ) d x > O  implies f f f  

G~(x)dx < f ~  Gj(x)dx. Integration by parts implies that m + j '~ (1 - Gi(x))dx = 

G~(m)m + f ~  xdG(x)  = Elm- l~z,~,,)] + E[Z"I~zi>m}] = E[max{m, Z')] ,  and 
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therefore f ~  (Gi(x) - @(x)) dx > 0 implies /3NE[max(m, Z;}] > fiNE[max(m, 
Z/}] or E[U~v(m, l i )]  > E[U~(m, Z/)].  

If neither Z; stochastically dominates Z j nor Z j stochastically dominates Z i, 
then there exists an m l such that fo "1 (Gi(x) - Gj(x)) dx > 0 and there exists an m e 
such that f o  2 (G;(x) - Gj(x)) dx < 0. Continuity of the integral implies that there 

f I f  ! I t  
exist two disjoint intervals of possible states [s i , s i ] and [s/, s i ] such that for all 
m ~ Is;, s'i'], f o  (G i ( x ) -  Gj(x))dx > 0  and thus in the last period an optimal 

¢ t t  

strategy will prefer observing attribute i to attribute j and for all m E [sj, sj ], f o  
(Gi(x) - G j ( x ) ) d x  < 0  and in the last period an optimal strategy will prefer 
observing attribute j to attribute i. Since every Z i has a strictly monotonic 
cumulative distribution, for any interval there is a positive probability that 

I t  t t t  sN_ 1 E[s~, s~] and that su_ 1 E [s/, s/]. This completes the proof of Theorem 
2. [] 

4. The infinite horizon problem 

As opposed to the finite horizon problem, when the sequence of products is 
infinite the horizon faced by the decision-maker is the same at every stage. We 
show that in this case an optimal strategy always observes the same attribute. In 
order to prove this result, we use the fundamental theorem of discounted dynamic 
programming which is due to Blackwell (1965). According to this theorem, 
excessivity is a sufficient condition for the optimality of a policy ~-. Formally, a 
policy r satisfies the excessivity criterion if for all s E S and n/> 0, 

vo i> 

where O(.) is an operator which is defined as follows. Let F =  { f :  S - - ~ I  f is 
bounded and measurable}, define O : F---> F as 

O(f) (s )  =--SUPA f (r(s, a, s') + 1~f(s')) dq(s' ls, a) . 

Verbally, a strategy ~- satisfies the excessivity criterion if at any stage n 1> 0 and 
any state s E S, delaying r by one period, at period n taking the best possible 
action, and at period n + 1 reverting back to r does not yield a higher expected 
payoff. 

Before identifying the optimal strategy, we prove a preliminary result. For 
i E { 1 , . . . ,  k},  define a stopping time ti: 

t i ==- min{n ~> 0 1/3E[max{s,, Zi}] <~s,}. 

Proposition 3. For every attribute i E {i . . . . .  k} ,  t i determines a unique threshold 
value b i --/3E[max{bi, z i}]  such that for  states s > bi, /3E[max{s, z i}]  <s  and for  
states s < b i ,  /3E[max{s, Zi}] > s. 
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Proof. The proof follows from the properties of fiE[max{s, zi}] a s  a function of 
s. Notice that, 

(1) fiE[max{s, z i}]  is a continuous, increasing, and convex function of s. 
(2) Non-negativity of the decision-maker's utility function U(-) implies that 

fiE[max{0, Zi}] = fiE[Zi]. 
(3) Since U(.) is bounded by M, fiE[max{s, Zi}] = fis for all s/> M. 
By (1), f(s)=--flE[max{s, Z i } l - s  is a continuous function; since i f ( s ) =  

fg[d(max{s ,  W } ) / d s ] -  l ~ f i E [ 1 ] -  1 - f i  - 1 < 0 ,  f(s) is decreasing; f(0) = 
E[Z ~] > 0 by (2); and f (M) =/3M - M < 0 by (3). Therefore, there exists a unique 
0 < b~ < M satisfying b i = fiE[max{b/, W}]. For any s > b i, there exists a h < 1 
such that s = h b ~ + ( 1 - h ) M .  Convexity of fiE[max{s, Zi}] in s implies 
fiE[max{s, z i } ]~h f iE[max{b~ ,  z i}]  + ( 1 - h ) f E [ m a x { M ,  z i}]  which, by the 
definition of b i and (3) above, =ab i + (1 - a)fiM < ab~ + (1 - a)M = s. There- 
fore, fiE[max{s, W}] < s for all s > hi. For 0 ~ s < b~, observe that a = (b~ - s)/ 
(M - s) satisfies 0 < a < 1 and b~ = AM + (1 - h)s. Suppose that fiE[max{s, Zi}] 
s. By convexity of fiE[max{s, zg}] in s, b~ = fiE[max{b/, W}] ~af lE[max{M,  
Z~}] + (1 - a)fiE[max{s, Z~}] ~< A r M  + (1 - a) f s  = f b i  < b~. A contradiction• 
Therefore, we conclude that for 0 ~<s < b, fiE[max{s, Z~}] > s. [] 

We now turn to define the infinite horizon optimal strategy r* =(t*;  
a 1 , . . . , a , , ) .  Let 

t* ~ min{n/> 0] fiE[max{sn, z i}]  <~ s, for all i ~ {1 . . . . .  k}} . 

Let b ~- maxie{1 ..... k} {b,} and let j* E arg max~E{1 ..... k} {bi}" For 1 ~< n ~< t* define 
* --j*. In the case when there exists an i* ~ j *  such that b~. = b r ,  the optimal a n 

strategy r* can alternate between observing i* and j*. Alternatively, as a function 
from the states space to the actions space the stopping rule r* can be defined as 
follows: 

r* (s) = ~" Stop,  s ~> b ,  
[observe attribute j * ,  s < b .  

Notice that by Proposition 3 the two alternative definitions of r* are equivalent, 
namely they induce exactly the same strategy or observation behavior. We now 
prove, 

Theorem 4. The stopping rule r* is optimal. 

Proof. We demonstrate that r* 
computing V,,=(r*)(s). We claim 

f fins , s ~ b 

? S  s=o 
s = 0 implies that the observation process has already stopped and therefore 

satisfies the excessivity property. We start by 
that 
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V,,o~0-*)(0) = 0. For states s ~>b, z* stops and therefore V,=(z* ) ( s )  = fl"s. For 
states s < b, V, =(7*)(s) = f l " .  E[flm] " E[ZJ*IZ j* I> b], where m is distributed 
geometrically with probability of success p - Pr(Z i" t> b). Therefore, E[flm] = 
E~= 1 f l m ( 1 - - p ) m - l p = p / 3 / [ 1 - - 1 3 ( 1 - - p ) ] .  By Proposition 3, b = f l E [ m a x { b ,  
Z J*}] =/3((1 - p ) b  + p E [ Z J * I Z  j* >1 b]). Rearranging terms yields b = [p/3/(1 - 
/3(1 - p))]E[ZJ* [ Z i* I> b], or E[flm] • E[Z i* ]Z j*/> b] = b and therefore 

v. =/3"b. 
We demonstrate excessivity. Suppose that the decision-maker has already 

observed n i> 0 products. For states s , /> b, r* stops. Consider instead a different 
policy 7 which continues by observing any attribute i and then continues 
according to 7*. Notice that since s,+~ >-s n, observing attribute i can only 
increase the state, and therefore 7, which now imitates 7* stops immediately after 
the n + l th  product is observed. Now, for states s , /> b, Proposition 3 established 
that /3E[max{s, z i } ] < s ,  and therefore 7 yields an expected value of 
/3"+lE[maX{Sn, Zi}], lower than f l"s ,  which is the value that 7* would give by 
stopping at stage n. 

For states s n < b, 7" continues by observing attribute j*. A policy ~- which stops 
immediately is doing worse since it gives a value of f ins, ,  while 7* promises an 
expected value / 3"b>/3"s , .  Consider a different policy r which continues by 
observing attribute i # j *  and then continues according to 7*. Distinguish between 
two cases. (1) After observing attribute i, the state is s,+~ < b and r continues as 
r*.  (Notice that after observing attribute i, the policies 7 and r* coincide.) In this 
case, since E[V. ~(r*)(s.) ]Sn+ 1 ~" b] =/3n+lb, using z yields an expected payoff of 
/3"+1b which is not better than what r* gives. (2) After observing attribute i, the 
state is S.+l/> b and 7 continues as r*,  and therefore stops. We claim that strategy 
r* (that is, observing attribute j*) would have given a higher expected payoff in 
this case as well. Conditional on s.+ 1 >/b, observing attribute i yields an expected 
value of/3n+lE[Zi]zi >~ b], while observing attribute j* yields an expected value 
of fln+lE[ZJ* [Z  j* >i b]. Therefore, it is sufficient to show that E[Z j• ]Z  j* ~ b] >i 
E [ Z  i ] Z i ~ b]. We claim that for any i, j E { 1 , . . .  , k}, b i/> b~ implies E[max{bj, 
Z J}]/> E[max{bj, z i }] .  The reason is that by Proposition 3,/3E[max{bj, Z J}] = bj 
and since E[max{s, Zi}] is increasing in s, /3E[max{bj, z i}]>~/3E[max{bi ,  
Z i  } ] = b ~ by the proposition. Now we show that E[Z j~ ] Z r >~ b] >I E[ Z i ] Z i >1 b ]. 
Suppose the opposite holds. It follows that Pr(Z r < b)b  + Pr(Z j~ /> 
b ) E [ Z r ] Z  r ~>b] < Pr(Z r < b)b + Pr(Z j* /> b ) E [ Z ~ I Z  i >1 b], and that 
E[max{b, Z r } ] < E [ m a x { b ,  z i } ] ,  which contradicts the previous fact. This 
completes the proof of Theorem 4. [] 

An important conclusion that we can draw from the optimality of the stopping 
rule 7* is that for every decision-maker (who is characterized by a utility function 
U(.) and a discount factor /3) there is only one interesting attribute, which is 
independent of the state or the realizations of his past observations. The attribute 



210 Z. Neeman / Mathematical Social Sciences 29 (1995) 195-212 

that ~-* chooses to observe depends on/3, and it is possible that different/3's will 
lead to observing different attributes. Thus, two decision-makers with the same 
utility function but different discount factors may choose to observe different 
attributes. More specifically, as/3 gets close to 1, the attribute that is chosen by %* 
is the following. Let G 7 1 ( p ) ~ i n f { x l G i ( x ) > ~ p }  denote the inverse of the 
cumulative distribution function Gi(- ). Note that the set argmaxic{l ..... k~ 
{G71(1)} is non-empty. If it contains a single maximizer, this will be the infinite 
horizon optimal attribute when /3 is close to 1. If there is more than one 
maximizer, the infinite horizon optimal attribute will be the one that maximizes 
E [ m a x { g - e ,  Zi}] for all e < e '  for some e ' > 0  and where g~max/e{1 ..... k~ 
{G71(1)}. Such a maximizer exists and it is the one with the highest associated bi 
value for all/3 >/3 '  for some/3 '  < 1. In words, it is the attribute which is capable 
of pulling the product to its highest possible value. When /3 approaches 1 and 
when the sequence of products is infinite, the decision-maker becomes 'patient' 
enough to risk observing only this attribute. The dependence of the optimal 
attribute on/3 in the infinite horizon problem contrasts with what happens in the 
finite horizon problem. When the sequence of products is finite, if it is the case 
that the optimal strategy continues to observe another product, then the choice of 
which attribute to observe is independent of/3./3 affects the finite horizon optimal 
strategy only through the decision of when to stop. 

Another  important parameter of the optimal strategy is b which, as shown in 
the proof of Theorem 4, is the expected utility of the decision-maker when 
starting the observation process. Not surprisingly, it is monotonically increasing in 
/3. 

Notice that the stopping rule r* is also stationary. However, it is only 'almost' 
myopic. It is myopic in the sense that the decision whether to stop or not depends 
only on observing the situation one step ahead. Yet, it is not entirely myopic. 
Once it decides to continue, the stopping rule might pick up an attribute which 
does not give the highest one-step ahead expected payment. It is therefore 
possible that in some states, if the observation process would have ended in the 
next period, an optimal strategy would have picked a different attribute than ~-*, 
as demonstrated in Example 1. By contrast, ~-~ is truly myopic. 

This last observation suggests the existence of a discontinuity between the finite 
and infinite horizon problems. The two following observations show that this is 
not the case. For every n >>-O, V,,N(rN)(S ) is increasing in N and is bounded by 
Vn~(r*)(s) .  In fact, 

Lemma 5. Fix n >1 O, Vn,N(~'N)(S)--~--~ ~ V~,~(~-*)(s) for  any s E S. Moreover,  the 

convergence is uni form over s @ S',{0}. 

Proof. U(') is bounded by M. Therefore for s E S\{O}, Vn~('r*)(s ) - V n , N ( J ' ; ) ( S )  

<~ /3N-nM , O. For s = O, * * = O. V~,N(~'N)(O) = [] V~ ~(~-~)(0) 
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The previous lemma establishes the similarity between the finite and infinite 
horizon problems by showing that the payoffs associated with the optimal 
strategies coincide in the limit. The following theorem shows the similarity in the 
actions taken by the optimal finite and infinite horizon strategies. 

Theorem 6. There exists a finite N '  such that for any finite horizon N >>- N', an 
optimal strategy r N will observe an infinite horizon optimal attribute j* o f  at least 
N - N '  products. 

Proof. In the proof of Theorem 4 it was established that 

f f i "s ,  s t > b ,  

= , s < b ,  

S = 0 ,  

for all n/> 0. By Lemma 5, for any n/> 0 and e > 0 there exists an N'(e) such that 
* ~ * for all N>~N ', V.,N(ru)(S ) V . ,=(r=)(s) -e  for all s E S. Fix an n/> 0, an 

e < rain {b - fiE[max{b, Zi}]} 
i~arg max{by} 

j~{1 ..... /¢} 

(notice that by Proposition 3, e > 0) and N i> N'(e). For s . /> b, both r u and ~-~* 
stop. Suppose that s. < b. Observing j* yields 

fiE[V. +l,N (~" ~v) (max { S., ZJ*} )] 

> fiE[V.+, ~(ru)(max(s. ,  ZJ'})] - e 

= fi(Pr(Z j• < b)b + E[Z j*. l{zY.~b}] ) -- e 

which, by Proposition 3, equals b - e .  Observing any other attribute 
i~a rgmax je~ l  ..... ~} {by} yields no more than 

fiE[V.+I,N(~'N)(max{s., zi})] 

<~fiE[V. +1 ~(ru)(max{s . ,  Z/})] 

= fi(Pr(Z'  < b)b + E[Z i- l t z i ~ b ~ ] )  • 

We want to show that the observing attribute j* is better than observing attribute 
i. We have to show that b - e > /3(Pr (Z  i < b)b + E[Z i • l{z,~bl] ) = fiE[max{b, 
zi}].  To complete the proof, note that this last inequality holds because e < 
min i~a rg  max{by} {b - fiE[max{b, zi}]}. [] 

jE(1 ..... k} 
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