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 Econometrica, Vol. 74, No. 1 (January, 2006), 213-233

 NOTES AND COMMENTS

 ON THE GENERIC (IM)POSSIBILITY OF FULL SURPLUS
 EXTRACTION IN MECHANISM DESIGN

 BY AVIAD HEIFETZ AND ZVIKA NEEMAN1

 A number of studies, most notably Cr6mer and McLean (1985, 1988), have shown
 that in generic type spaces that admit a common prior and are of a fixed finite size,
 an uninformed seller can design mechanisms that extract all the surplus from privately
 informed bidders. We show that this result hinges on the nonconvexity of such a family
 of priors. When the ambient family of priors is convex, generic priors do not allow for
 full surplus extraction provided that for at least one prior in this family, players' beliefs
 about other players' types do not pin down the players' own preferences. In particular,
 full surplus extraction is generically impossible in finite type spaces with a common
 prior. Similarly, generic priors on the universal type space do not allow for full surplus
 extraction.

 KEYWORDS: Surplus extraction, information rents, universal type space, genericity,
 prevalence, shyness, face.

 1. INTRODUCTION

 DOES RELEVANT PRIVATE INFORMATION necessarily confer a positive eco-
 nomic rent to those who possess it? Surprisingly, the answer given by the
 literature to this question is negative. A number of studies, including, most
 notably, Cr6mer and McLean (1985, 1988), have shown that under standard
 assumptions-the existence of a common prior, a fixed finite number of types,
 risk neutrality, and no limited liability-an uninformed principal facing pri-
 vately informed players can generically implement any decision rule he could
 implement were that private information accessible to him. An uninformed
 seller, for example, is generically able to extract the full surplus of any number
 of privately informed bidders in an auction. As these "full-surplus-extraction"
 results imply that the players' private information is (generically) irrelevant,
 they have been said to "cast doubt on the value of the current mechanism de-
 sign paradigm as a model of institutional design" (McAfee and Reny (1992,
 p. 400)).

 Since full-surplus-extraction results make heavy use of the assumption that
 the type spaces are of a fixed finite size, it is natural to ask how crucial this as-
 sumption is for obtaining these results. This assumption is problematic because
 there is no a priori finite bound on the number of types needed for modeling

 'We thank an editor and four referees for very useful suggestions, and R. Anderson, E Forges,
 I. Gilboa, R. Laraki, B. Lipman, M. Marinacci, J.-E Mertens, C. Shannon, N. Vielle, and W. Zame
 for helpful discussions. Seminar audiences in Barcelona (JOCS), Boston University, Chicago,
 Harvard/MIT, Hebrew University, Northwestern, Rutgers, Rochester, University of California at
 San Diego, Vienna, Washington University, the Decentralization Conference at Duke, and the
 Cowles Foundation Conference on Robust Mechanism Design provided useful comments.
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 214 A. HEIFETZ AND Z. NEEMAN

 a situation involving asymmetric information. Indeed, the universal type space
 (Mertens and Zamir (1985)) that embeds all such models has a continuum of
 types, and its subspaces that admit a common prior can have an arbitrarily
 large number of types. If any of the priors in some relevant family of priors P
 could just as well serve as a plausible model of a situation involving asymmetric
 information, would full surplus extraction "typically" be possible in P? This is
 the question addressed in this paper.
 The starting point for our argument is Neeman's (2004) observation that full

 surplus extraction is possible only if the type space has the "beliefs-determine-
 preferences" (henceforth, BDP) property, which requires that almost every
 possible belief of every player about other players' types pins down the player's
 own preferences. As we show, a nondegenerate convex combination of a BDP
 prior and a non-BDP prior yields a non-BDP prior. This implies that the col-
 lection of priors that permit full surplus extraction (henceforth, FSE priors) is
 "small" provided that the ambient family of priors P is convex and contains at
 least one non-BDP prior.
 "Smallness" is established in both a "geometric" and a "measure-theoretic"

 sense. For the geometric perspective, we show that if P is convex and con-
 tains at least one non-BDP prior, then the subset of FSE priors is contained
 in a proper face of P. Furthermore, if P is the set of all priors on finite type
 spaces or the entire collection of priors on the universal type space, then the
 proper face containing the FSE priors has an infinite codimension in P. For the
 measure-theoretic perspective, we show that the set of FSE priors is shy in such
 a P. Shyness is a notion of smallness for convex subsets of infinite-dimensional
 topological vector spaces (in our case, the set of common priors) that gener-
 alizes the notion of Lebesgue measure zero in finite-dimensional spaces. The
 result applies both in case P is the collection of all priors on the universal type
 space and in case it is the collection of all such priors with a finite support.
 This paper makes a contribution to the growing literature on robust mecha-

 nism design that has stemmed from Robert Wilson's view that further progress
 in game theory depends "on successive reduction in the base of common
 knowledge required to conduct useful analyses of practical problems" (Wilson
 (1987)). As shown by Neeman (2004), full surplus extraction hinges on there
 being common belief that a player's belief pins down the player's preferences.
 Once this assumption is relaxed, the full surplus of the players cannot be ex-
 tracted. The argument presented in this paper describes the conditions under
 which this is generically the case.
 The rest of the paper proceeds as follows. For simplicity, instead of consid-

 ering surplus extraction in a general mechanism design problem with interde-
 pendent types, we confine our attention to the classic problem of the design
 of a revenue maximizing auction in a private-values setting (the general case
 is treated in Heifetz and Neeman (2005)). Section 2 provides the required de-
 finitions. Section 3 is devoted to the statement and derivation of the results.
 Section 4 concludes with a discussion. Several more technical definitions and

 proofs are relegated to the Appendix.
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 FULL SURPLUS EXTRACTION 215

 2. SURPLUS EXTRACTION IN SINGLE OBJECT AUCTIONS WITH PRIVATE VALUES

 We consider the problem of a seller who wishes to design a revenue maxi-
 mizing auction of a single object. The seller faces n risk neutral bidders who
 each have a privately known (private) valuation for the object. The value of the
 object for the seller is normalized to zero. Each bidder may refuse to partici-
 pate in the seller's auction, but if she agrees to participate, then she is bound
 by the auction's outcome.

 Let N = {1, ..., n} denote the set of bidders or players. Bidder i's, i E N,
 valuation, or willingness to pay for the object, is denoted by vi E Vi. The set of
 bidder i's valuations Vi, i E N, is assumed to be a complete, separable, metric
 space (in particular, Vi may be finite). The payoff to a bidder with valuation vi
 who wins the object with probability q and who pays an expected amount m is
 given by q - vi - m. We refer to vi as bidder i's preference or preference type. Let
 V = V, x ... x V,. The set V is the basic space of uncertainty for this problem.

 2.1. Type Spaces

 Bidder i's private information is captured by its type Oi E Oi. The sets of bid-
 ders' types Oi, i E N, are assumed to be complete, separable metric spaces.
 For every measurable space X, let A(X) denote the space of probability mea-
 sures over X. Each type 6i E Oi is associated with a preference type i3i(Oi) E Vi
 that describes Oi's willingness to pay for the object, and with a belief type

 bi(Oi) E A(Oi) that is a probability measure on the space of other bidders'
 types O_i =- fji SJ. The space of probability measures A(Oi) is endowed
 with the topology of weak convergence.

 We assume that distinct types Oi # 0' of a given bidder i differ either by their
 preference type or by their belief type. Each type of each bidder is assumed
 to know its own willingness to pay for the object and its own beliefs. Since
 we focus our attention in this paper on a private-values model, each type Oi's

 preference type Oi3(Oi) is defined independently of Bi's belief type bi(0). This
 assumption is relaxed in Heifetz and Neeman (2005).2

 A product space O HieN W, of the players' type spaces is called a private- values type space. Each profile of types 0 e O is called a state of the world.

 2.2. Priors

 A probability measure pi on a private-values type space O = HicN Oi is
 called a prior for bidder i if bidder i's belief types bi(Oi) are the posteriors

 2The assumption that each type knows its own belief is captured by defining bi(Oi) as a proba-
 bility measure over Oi rather than over Oi x 0-i. The implied presumption about the bidders'
 introspective ability is standard and is maintained throughout the paper.
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 216 A. HEIFETZ AND Z. NEEMAN

 of pi or if, roughly, pi(lOi.) = bi(8i) for pi-a.e. 0i E Oi. Formally, pi is a prior
 for bidder i if for every bounded real-valued measurable function p 0: --+ R,

 S(f~/ i p(0 , _O ) db ,(0j)(0_-))dpil,,(Oi) = p(0) dpi(0),
 where pilO, is the marginal of pi on Oi.

 A probability measure p on 0 is called a common prior, or prior for short,
 if it is a prior for every bidder i E N.

 For a given collection of type spaces that is closed under finite unions, the set
 of bidder i's priors on these type spaces is convex: If p'c A(0') and p' E A(0")
 are two priors for bidder i, then so is ap' + (1 - a)p' E A(0' U 0") for every
 a E [0, 1]. It follows that the set of common priors on any such collection of
 type spaces is also convex.

 Let P denote a convex family of priors on such a collection of type spaces
 (equivalently, P can also denote a convex family of priors on the union of these
 type spaces). We henceforth refer to P as the ambient family of models under
 consideration, with respect to which genericity is to be established. It is natural
 to assume that P in indeed convex. If it is conceivable that the seller, who
 is uninformed, could potentially hold either the belief p' about the bidders'
 preferences and beliefs or the belief p", then it is also conceivable that it might
 hold a belief that is a mixture of p' and p".

 2.3. BDP Priors

 DEFINITION 1: A prior p E A() satisfies the beliefs-determnine-preferences
 property for bidder i e N if there exists a measurable subset ' C O such that
 the marginal plo, of p on Oi assigns probability 1 to 0' or p io(Op) = 1, and

 no pair of distinct types 0i : 80 in 0p hold the same beliefs, i.e., b(0,) A ((0) for every two different types 0,, 0': O0.

 This notion of beliefs determine preferences generalizes the one in Neeman
 (2004). A prior p that satisfies the beliefs-determine-preferences property for
 bidder i is called a BDP prior for bidder i. A prior p that is a BDP prior for
 every bidder i E N is called a BDP prior. Notice that BDP is a property of a
 prior, not of a player's type or a state of the world.

 Since any pair of distinct types 0, 4 0' in a private-values type space 0 differ
 either by belief type or by preference type, there is no pair of distinct types
 in 0p that hold identical beliefs but different preferences. If p is a BDP prior,
 then it follows that for a type in O7, knowledge of the type's beliefs "pins down"
 or implies knowledge of the type's preferences.

 The next proposition describes a property of BDP priors that is useful for
 proving our two main results.
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 FULL SURPLUS EXTRACTION 217

 PROPOSITION 1: Let 0', 0" be two type spaces and 0 = 0' U 0".A nondegen-
 erate convex combination p = ap' + (1 - a) p" E zA(0) of two priors p' E A(0')
 and p" E A(0") is BDP if and only if both p' and p" are BDP. In particular,
 a nondegenerate convex combination of a BDPprior and a non-BDPprior (or of
 two non-BDPpriors) is a non-BDP prior.

 For example, two different common priors p' and p", which are represented
 by the matrices below (where the entries in each matrix are positive and sum to

 one, and either v, , v- or v2 f =2), are BDP if and only if 7 : L and l b", respectively:

 p' O = (v2, b) (2, b
 (1) of = (vi, b') a' b'

 oi =- (v, b) C' d'
 p" O =(v2, b) 0=( (32,b2)
 01 = (v1, b'') a" b"
 01 = (Vi, b"') c" d"

 A nondegenerate convex combination of these two priors, p = ap' + (1 - a) p",
 which is represented by the matrix below, is BDP if and only if both p' and p"
 are BDP:

 p 02 (2,b2) 02- ((2,b22, b22) ( = (v2, O I
 01 = (vi, b') aa' ab' 0 0

 (2) 01 = (i1, b') ac' ad' 0 0

 o1- = (vi, b") 0 0 (1 - a)a" (1 - a)b"
 of = (, b) 0 0 (1 - a)c" (1 - a)d"

 The proof of Proposition 1, which is relegated to the Appendix, has two
 parts. The more straightforward part consists of showing that a convex com-
 bination of a BDP and a non-BDP prior is non-BDP. The more delicate part
 consists of showing that a convex combination of two BDP priors is BDP.

 2.4. Full Surplus Extraction

 By the revelation principle, no loss of generality is implied by assuming that
 the seller employs an incentive compatible and individually rational "direct-
 revelation" auction mechanism (q, i: -- [0, 1], m0: O -+ [0, l])iN in which
 each bidder i is asked to report its type Oi E 0i and then to participate in a
 lottery in which he or she pays an amount mi(O), and wins the object with
 probability qi(O).
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 218 A. HEIFETZ AND Z. NEEMAN

 A mechanism (qi, mi)i N is incentive-compatible if every type Bi E O 0of every
 bidder i E N maximizes its expected payoff by truthfully reporting its type or
 if, for every O6 E Oi,

 f(qi(Oi8, O-i)Di(Oi) - m,(Oi, 0_/)) dbi(Oi)(0_i)
 > (qi(6, 61 ) i(Oi) - mi(of, Oi)) dbi(6,)(-i)

 for every O' E; Oi.
 A mechanism (qi, mi)ieN is individually rational if every type Oi Oi of every

 bidder i E N prefers to participate in the mechanism rather than to opt out or
 if, for every Oi E Oi,

 J (qi(6i, 1-i)fi(0i) - mi(Oi, -i,)) db(0(O)(-i) > 0.
 DEFINITION 2: A prior p permits the full surplus extraction from a set K c N

 of bidders if there exists an incentive-compatible and individually rational
 mechanism (qi, mi)iEN that generates an expected payment to the seller that
 is equal to the full surplus generated by the bidders in K, i.e.,

 L Y mi(O) dp(O) = max{ ii (Oi)} dp(O). iEK

 A prior that permits the full surplus extraction from the K bidders is called a
 full-surplus-extraction prior for K.

 We show that BDP is necessary for full surplus extraction. Specifically, we
 show that if a prior p permits the extraction of bidder i's full surplus, then p is
 a BDP prior for player i.

 PROPOSITION 2: A prior p that is a FSE prior for bidder i is a BDP prior for
 bidder i.

 PROOF: Suppose that p is a FSE prior for bidder i. Let (qi, mi)iEN be an
 incentive-compatible and individually rational mechanism that extracts the full
 surplus of bidder i. Observe that this implies that bidder i must win the object

 with p-probability 1 under the mechanism (qi, m1i)iU and that bidder i's in- dividual rationality constraint must be binding with p-probability 1 under the

 mechanism (qi, mi)iEN.
 Suppose that p is not a BDP prior for bidder i. It follows that there exist two

 disjoint measurable subsets of bidder i's types, A,, A c Oi, that each have a
 positive p-probability

 peog(Ai) > O, ploi(Ai) > 0,
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 FULL SURPLUS EXTRACTION 219

 and the same range of beliefs

 bi(Ai) = b(A') C A(O_,),
 but different valuations. That is, if O6 E Ai and 0' E A' are such that

 bi(O') = bi( ,),

 then

 In particular, for every type 0i E A, there exists a type 8' E A such that b;(Oi) =
 b(0i) but ii(O') < i~(0j). It follows that

 J (qi(01, 1)fi(0) - mi(0, 0_j))db (0j) (O)

 = (qi(6 , _,)i,(O,) - mo(6, )) dbi(o )(Mi)
 -i O O i i( i

 > (qi(6Oi, O-i)i(0i) - mi(, 0,)) dbi(Oi)(i)
 > 0.

 The first inequality follows from the incentive compatibility constraint for

 type O6; the following equality follows from the fact that bi(0') = bi(0j); the next

 strict inequality follows from the fact that Oi( ) < i(0' ) and that qi(-, 0i0) = 1 for p-almost every type f E A; fand the last inequality follows from the in-
 dividual rationality constraint for type 0'. It therefore follows that bidder i's
 individual rationality constraint is not binding for p-almost every type 0i E A;.
 A contradiction. Q.E.D.

 3. THE SET OF FSE PRIORS IS SMALL

 In this section we show that within a convex family P of priors that contains
 at least one non-BDP prior (henceforth, NBDP prior) for bidder i, the sub-
 set F of FSE priors for bidder i is small in two different senses. The first sense
 is geometric: The set of FSE priors is contained in a proper face of the convex
 body of priors P. The second sense is measure-theoretic: The set F of FSE
 priors is finitely shy in P.
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 220 A. HEIFETZ AND Z. NEEMAN

 3.1. The Set of FSE Priors Is Small in a Geometric Sense

 DEFINITION 3-Rockafellar (1970): A convex subset F of a convex set C
 is called a face if whenever f e F is a convex combination of x, y E C, then
 x, ye F.

 DEFINITION 4: A face F of C is called a proper face if F is a proper subset
 of C. If C is a convex subset of a vector space X, then the codimension of F
 in C is the dimension of the minimal subspace Y of X such that C is contained
 in the subspace spanned by F and Y.

 THEOREM 1: Let P be a convex family of priors that includes at least one
 NBDP prior for bidder i. Then the subset B of BDPpriors for bidder i is a proper
 face of P.

 PROOF: To show that 1 is a proper face of P we have to show (i) that the
 set B is convex, (ii) that if a nondegenerate convex combination p = ap' + (1 -
 a)p" belongs to B, then so do p' and p", and (iii) that B is a proper subset of
 the set of priors P.

 Statement (i) follows directly from Proposition 1. The contrapositive of (ii) is
 "if either p' or p" is NBDP, then so is p = ap' + (1 - a)p" provided a c (0, 1)."
 This also follows directly from Proposition 1. Finally, (iii) follows from the fact
 that P contains a NBDP prior for bidder i. Q.E.D.

 COROLLARY 1: Let P be a convex family of priors that includes at least one
 NBDP prior for bidder i. Then the subset .F of full-surplus-extraction priors for
 bidder i is contained in a proper face of P.

 PROOF: The proof follows immediately from Theorem 1 and Proposi-
 tion 2. Q.E.D.

 REMARK 1: In particular, Corollary 1 applies to two important families of
 priors:

 - The family of priors P, on the universal type space. The universal type
 space is the type space into which any other type space can be mapped in a
 beliefs-preserving way. The fact that each bidder is assumed to know its own
 valuation of the object implies that the universal type space here is a spe-
 cial case of the standard universal type space analyzed in Mertens and Zamir
 (1985), Brandenburger and Dekel (1993), and Heifetz (1993). For the sake of
 completeness, we describe in the Appendix the properties of this private-values
 universal space, which we denote by T.3

 3Ely and Peski (2006) have recently suggested that the basic space of uncertainty in the con-
 struction of the universal space should be larger, and consist not only of payoffs (as reflected by
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 FULL SURPLUS EXTRACTION 221

 - The family of priors 9Pf on finite type spaces. Corollary 1 thus implies
 that consideration of the convex family of all priors on finite type spaces leads
 to a reversal of Cremer and McLean's (1985, 1988) result, which was obtained
 for the (nonconvex) family of priors on type spaces with a some pre-given fi-
 nite number of types ni > 2 for each bidder i. See Section 4.1 for additional
 discussion of the relationship of our results to those of Cr6mer and McLean.

 In fact, for the two families of priors , and Pf mentioned in Remark 1, Corollary 1 can be strengthened as follows:

 PROPOSITION 3: For P, and Pf , the subset of full-surplus-extraction priors for

 bidder i is contained in a proper face of infinite codimension in 7,u and 7f, re-
 spectively.

 PROOF: Given Proposition 1 and Theorem 1, it remains to show that the co-
 dimension of the set of BDP priors B in Pu and Pf is infinite. This follows from
 the fact that there are infinitely many (in fact, a continuum of) finite-support
 NBDP priors that are not convex combinations of other priors.

 To see this, consider two different bidders i, j, and two distinct valuations
 for each, vi v' E 1i and vj : v) E V . There is a continuum of priors p,,s with
 r, s E (0, 1) that are each described by the matrix

 Pr,s VU V. vi rs r(1 - s)
 v/ (1 - r)s (1- r)(1- s)

 Each prior p,, is such that with probability 1 each bidder has the same be-
 lief about the other bidder's types irrespective of its own valuation, so p,,s is
 not a BDP prior. (If there are more bidders, then the definition of p,,s can be
 extended by choosing some particular valuation for each of those extra bid-
 ders, and having Pr,s assign probability 1 to that combination of valuations
 for each of the four combinations of valuations of i and j.) Moreover, each
 prior p,s is not a convex combination of other common priors in 7, because
 if (r, s) : (r', s'), then the priors Pr,s and Pr',,s on the universal space T have
 disjoint supports. Q.E.D.

 REMARK 2: In a finite-dimensional space, a proper face of a convex set is
 nowhere dense (namely, its closure has an empty interior). This is not nec-
 essarily the case in infinite-dimensional spaces. In particular, if the space of

 valuations in our auction setting), but also of conditional beliefs about payoffs. This extension
 captures bidders' beliefs about correlations across their types, which may affect the range of im-
 plementable outcomes. Corollary 1 applies just as well to the family of priors on the universal
 type space in Ely and Peski's construction.
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 222 A. HEIFETZ AND Z. NEEMAN

 finite-support priors Pf, on the universal space is equipped with the topology
 of weak convergence, then both the subset of finite-support BDP priors and its
 complement, the subset of finite-support NBDP priors, are dense in Pf,. Be-
 cause 7Pf, is dense in the space of all priors P,, on the universal space (Mertens
 Sorin, and Zamir (1994, p. 156)), it follows that both the sets of BDP and of
 NBDP priors are also dense in 'P,. In particular, neither set is open and dense
 in P, .

 3.2. The Set of FSE Priors Is Shy

 A natural definition of genericity is that of full Lebesgue measure. Un-
 fortunately, there is no direct analogue for Lebesgue measure in infinite-
 dimensional spaces. Unlike the Lebesgue measure in a finite-dimensional
 Euclidean space Rk, which is spread uniformly across the space, in infinite-
 dimensional spaces there does not exist any (countably additive) translation
 invariant measure. For example, in an infinite-dimensional separable Banach
 space, any open ball of radius r > 0 contains an infinite sequence of disjoint
 open balls of radius r, so if a translation-invariant measure were to assign a
 positive measure to these balls, then the r ball would be assigned an infinite
 measure for any r > 0.4 Therefore, in infinite-dimensional spaces, probabilities
 or measures are not satisfactory devices for determining whether events are
 "typical."

 Recently, a general notion of largeness, which coincides with full Lebesgue
 measure in finite-dimensional spaces, has been proposed. An event E in a
 finite-dimensional Euclidean space Rk has Lebesgue measure zero if and only
 if there exists a positive measure At on Rk such that E and all its translations

 {x + y: x E E}, y E Rk, have /t-measure zero. Christensen (1974) and Hunt,
 Sauer, and Yorke (1992) have relied on this observation and defined a Borel
 subset of a complete metric topological vector space to be shy if there exists
 a positive measure At on the space such that the set and all its translations
 have A-measure zero.5 They called the complement of a shy set prevalent. They
 showed that shy sets satisfy the properties one would expect "small" or "negli-
 gible" events to satisfy. In particular, a subset of a shy set is shy, every transla-
 tion of a shy set is shy, a countable union of shy sets is shy, and no open set is
 shy.

 Anderson and Zame (2001) have adapted the Christensen (1974) and Hunt,
 Saver, and Yorke (1992) definition to the case in which the relevant parameter

 4Furthermore, confining attention to full-support quasi-invariant measures, which preserve
 null sets under translations (such as the Gaussian measures on the Euclidean spaces), is unhelp-
 ful either. Under fairly general conditions, it can be shown that if there does not exist a nontrivial
 full-support invariant measure on an infinite-dimensional space, then neither does there exist
 such a quasi-invariant measure (see, e.g., Yamasaki (1985)).

 5For more on prevalence, see the recent survey by Ott and Yorke (2005).
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 FULL SURPLUS EXTRACTION 223

 set is a convex subset C of a topological vector space X. Since we are interested
 in determining the genericity of the set of FSE priors within a convex family of
 priors, this is the definition we employ.
 It turns out that for our purposes it is not necessary to use Anderson and

 Zame's general definition of shyness, but rather a simpler and stronger no-
 tion called finite shyness. Let AH denote the Lebesgue measure on a finite-
 dimensional subspace H C X.

 DEFINITION 5-Anderson and Zame (2001): Let C be a completely metriz-
 able convex subset of the topological vector space X. A universally measur-
 able6 subset E C C is finitely shy in C c X if there exists a finite-dimensional
 subspace H C X such that AH (C + p) > 0 for some p E X and AH(E + x) = 0
 for every x E X. An arbitrary subset F C X is finitely shy in C if it is contained
 in a finitely shy universally measurable set.

 Anderson and Zame (2001) showed that if a set E is finitely shy in C, then it
 is also shy in C. A subset Y C C is said to be prevalent in C if its complement
 C\Y is shy in C.
 Consider a convex family of priors P. Positive multiples of priors in P con-

 stitute a convex cone of (positive) measures. Taking the differences of pairs
 of such measures yields the vector space of signed measures that are gener-
 ated by 7, denoted AMI. We assume that the vector space AM is endowed with a
 topology that satisfies the following two properties:
 (i) The mappings

 (p, p') -+ P + p',
 (a, p) - ap

 are continuous in p, p' 7P and a E R (these continuity requirements
 make A4 a topological vector space).

 (ii) A subset A C R is Borel if and only if for every pair of priors p, p' e 7,
 the one-dimensional set of weighted averages

 {ap + (1 - a)p': a A

 is a Borel subset of LM.

 These two properties are satisfied by a large variety of topologies on M,
 including the topology of weak convergence and the topology of the total vari-
 ation norm, but not by extremely strong topologies such as the totally discon-
 nected topology in which every subset of M/ is open.

 6A subset E C X is universally measurable if it is measurable with respect to the completion
 of every regular Borel probability measure on X.
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 224 A. HEIFETZ AND Z. NEEMAN

 THEOREM 2: Let P be a completely metrizable convex set ofpriors with a topol-
 ogy that satisfies requirements (i) and (ii) above. Suppose that P contains at least
 one NBDP prior for bidder i. If the subset B C P of BDP priors for bidder i is
 universally measurable, then both B and the set of FSE priors for bidder i, F, are
 finitely shy in P.

 PROOF: Theorem 1 implies that 13 is a proper face of P. Lemma 1 implies
 that 13 is finitely shy in P. Proposition 2 implies that also .F C 13 is finitely shy
 in P. Q.E.D.

 Lemma 1 states that a proper face of a convex set is finitely shy in the set.

 LEMMA 1: Let C be a convex subset of the topological vector space X. Suppose
 that X is endowed with a topology that satisfies the following property: for every

 c = c' E C and A c R, the one-dimensional set

 {a(c - c'): a E A}

 is a Borel subset of X if and only if A is a Borel subset of R. Let F be a Borel set
 that is a proper face of C. Then F is finitely shy in C.

 PROOF: Fix some g E C \ F and f E F. Consider the one-dimensional sub-
 space of X,

 H = {a(g - f):a e R}.

 Observe that a(g - f) + f = ag + (1 - a)f E C if a [0, 1] and hence AH(C -
 f) > 1 > 0. However, AH(F + x) = 0 for every x E X. Indeed, H n (F + x) is
 either empty or a singleton. Assume by contradiction that

 fl + x = hi = al(g - f),
 f2 + x = h2 = 2( - f),

 where hi, h2 E H, fl, f2 e F, and al > a2. Then

 f - f2 = (a - a2)g - (a - a2)f

 or

 1 (af --a2) ?fi+ -f 1 + (a1 - a2) 1(1 - a2)
 1 (a1 - a2)

 =- "f2+ "g, 1 + (al - a2) 1 + (a1 - a2)

 where the left-hand side is a convex combination of fi, f E F, and hence in F,
 while the right-hand side is a convex combination of f2 and g. Since F is a
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 FULL SURPLUS EXTRACTION 225

 face, this implies that f2, g E F. A contradiction to the assumption that g E
 C \F. Q.E.D.

 REMARK 3: Theorem 2 applies in particular when P is the convex family of
 all priors P, on the universal space or the convex subfamily of priors with a
 finite support 7f, on the universal space, provided that P is endowed with a
 topology at least as strong as the topology of weak convergence, that satisfies
 properties (i) and (ii), and with which P is completely metrizable.7 Theorem 2
 is applicable because by Lemma 2 in the Appendix, the set 13 of BDP priors for
 bidder i is a Borel (and therefore universally measurable) subset of the set of

 priors P, and hence also of its subset of finite-support priors P ,u.8

 REMARK 4-B- Is a Null Set: In a recent paper, Perry and Reny (2003) define
 a set to be null if it is a countable union of finitely shy sets {A} I,, where for
 each n there exists a one-dimensional subspace Hn = lax, : a R}) such that
 AH, (A, + x) = 0 for every x E X. Inspection of the proof of Lemma 1 reveals
 that the set B of BDP priors for bidder i is a null set according to this definition.

 4. DISCUSSION

 4.1. Comparison with Crimer and McLean's Results

 Cr6mer and McLean (1988) showed that within the set of models with a
 fixed finite number of types ni > 2 for each player i (equivalently, within the
 set of priors that are supported on a fixed finite number of types ni > 2 for
 each player i), the set of priors that permit full surplus extraction from any
 bidder is generic. Our argument cannot be phrased in this more limited setting,
 because the set of priors that are supported on a fixed finite number of types
 is not convex. For example, the mixture p = ap' + (1 - a)p" of the common
 priors that are represented by the two matrices in (1) is not the prior that is
 represented by the matrix

 02i = ()2', b") 2' = (212, bll)
 -0'-= (vl,bl"') aa'+(1-a)a" ab'+-(1 -a)b"
 S= (il, b') ac' + (1 - a)c" ad' + (1 -a)d"

 7Prior P, is a complete metric space with, for instance, the topology of weak convergence,
 as well as with the total-variation norm. In contrast, its subspace of finite-support priors fu, is
 a complete metric space with the total-variation norm, but we do not know if it is completely
 metrizable also with the topology of weak convergence. Since complete metrizability of the am-
 bient convex set C is a prerequisite for defining shyness of its subsets, the definition itself might

 therefore apply to the finite-support priors fu, only with a smaller range of topologies than the
 range with which it applies to ',. (Such a subtlety did not arise in the purely geometric argument
 of the previous subsection, which relied entirely on the linear structure of the spaces and did not
 involve any choice of topology.)

 8We do not know if Theorem 2 can be proved also for the set of priors P'f on finite type spaces
 (not necessarily within the universal space).
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 226 A. HEIFETZ AND Z. NEEMAN

 but rather the prior that is represented by the matrix (2), which is supported
 on eight states rather than on four.

 4.2. Approximate and Robust Full Surplus Extraction

 A number of results suggest that although it might be impossible to imple-
 ment a given social choice rule, it might nevertheless be possible to implement
 a rule that is e close to it, for any e > 0. When this is the case, the social choice
 rule is said to be "virtually implementable" (see, e.g., McAfee and Reny (1992),
 Abreu and Matsushima (1992)). Our results imply that full surplus extraction
 also fails to be generically virtually implementable. This is because if a prior p
 is not BDP for bidder i-as is the case for generic priors-then at most 1 - e'
 of the surplus can be extracted from this bidder for some e > 0. Hence, for

 0 < E< <p', it is not the case that 1 - e of the surplus can be extracted from this
 bidder.

 We conjecture, but have been so far unable to prove, that, for every small
 e > 0, both the set of priors in which it is possible to extract at least 1 - e of
 the available surplus and the set of priors in which it is impossible to extract
 at least 1 - e of the available surplus are not small in the sense that neither of
 them is shy.9
 A conceptually distinct question is how much surplus can be extracted in a

 robust way. Suppose that for a given prior p, the principal has designed an op-
 timal mechanism p, that extracts as much surplus as possible. If it turns out
 that the principal has misspecified the prior slightly, would the mechanism ,p
 extract nearly as much of the surplus as could be extracted with the correct
 prior? We conjecture that the answer to this question is negative, and further-
 more, that the extent of surplus extraction by a fixed optimal mechanism is gen-
 erally discontinuous in the prior. That is, we conjecture that arbitrarily close to
 any prior p, there exists another prior p' such that the mechanism p, extracts a

 much smaller portion of the surplus than the portion of surplus that ,Xp extracts
 under p.'0
 Finally, it is also interesting to know how the portion of the extractable sur-

 plus varies with the prior p when the mechanism is allowed to vary optimally

 'For the case of public good provision, Neeman (2004) describes an example where if beliefs
 do not determine preferences, then the probability that a public good can be provided decreases
 to zero with the number of players, while efficiency requires that the public good be provided with
 probability 1. It therefore follows that in such a setting the total surplus that can be extracted from
 the players converges to zero at the same time that the total surplus that could be generated by
 the players remains uniformly bounded away from zero.
 "oConsider the sequence of common priors

 p = v=1 v=2-1
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 FULL SURPLUS EXTRACTION 227

 with the prior. Since the set of FSE priors is dense (even though, as we showed,
 it is nongeneric), the portion of the extractable surplus is discontinuous at any
 NFSE prior. The percentage of the surplus that can possibly be extracted as
 a function of the prior is thus discontinuous "almost everywhere" (i.e., on a
 prevalent set of priors). We conjecture that the extractable surplus may never-
 theless be continuous at the nongeneric subset of environments described by
 the FSE priors themselves.

 4.3. Type Spaces Without a Common Prior

 In this paper we restrict our attention to type spaces that admit a common
 prior. There are two reasons for this restriction. First, this is a standard practice
 in economic modeling, synonymous with the so-called Harsanyi doctrine. More
 importantly, the universal type set Ti of each bidder (see the Appendix) has the

 product structure Vi x A(T_i). It therefore violates the BDP property in the
 most extreme possible way-every belief type of the bidder can be associated
 with each and every one of its possible valuations. Thus FSE is impossible in
 the universal type space.

 4.4. Fubini's Theorem

 The fact that no invariant measure exists on infinite-dimensional vector

 spaces prevents the notion of prevalence from satisfying all the properties that
 full Lebesgue measure satisfies in finite-dimensional spaces. For example, it
 fails to satisfy the analogue of Fubini's theorem. There could be a subset E of
 an infinite-dimensional space Y x Z such that the sections {z e Z: (y, z) e E}
 are shy in Z for every y e Y, while the sections {y E Y:(y, z) e E} are preva-
 lent in Y for every z E Z. This, of course, is impossible if Y x Z is finite dimen-
 sional.

 For instance, if we take Y = A(R), Z = R, and E = {(Qi, z) e A(IR) x
 R: A(z) > 0O, then for every a e A(R) the section {z e IR:L(z) > 0} (i.e., the
 atoms of 1p) is at most countable and hence shy, while for every z e R the sec-
 tion {I E A((R) : /(z) > 0} is prevalent because its complement is a proper face
 of A(R).

 The total surplus that is generated by this sequence converges to 5. However, for every n, the
 mechanism that extracts full surplus from the limit prior

 p= v= v 1v2
 v=2l)

 cannot extract more than 1 from any element of the sequence because it excludes bidders with
 valuation 2 - 1
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 228 A. HEIFETZ AND Z. NEEMAN

 The fact that this section is a countable intersection of weakly open and
 dense sets

 {t EA(R):'yt(z) > 0} = IpB LA(R):'/ z - , z + > 0 n= 1

 implies that it is a second-category set with the topology of weak convergence.
 Thus, this example illustrates that the analogue of Fubini's theorem also fails
 in infinite-dimensional spaces for this alternative, topological, notion of "large-
 ness" and not only for the measure-theoretic notion of prevalence.

 Dept. of Economics and Management, The Open University of Israel;
 aviadhe @openu.ac.il; http://www.openu.ac.il/Personal_sites/Aviad-Heifetz.html

 and

 Dept. of Economics, Boston University, 270 Bay State Road, Boston, MA 02215,
 U.S.A.; and Center for Rationality and Economics Department, Hebrew University
 of Jerusalem, Israel 91904; zvika @B U edu; http://people.bu.edu/zvika.

 Manuscript received July, 2004; final revision received August, 2005.

 APPENDIX

 The Private-Values Universal Type Space

 Given a basic space of uncertainty V - Vi x ... x V, and a set of bidders N
 as defined in Section 2.1, there exists aprivate-values universal type space

 ieN

 into which every other private-values type space can be mapped in a beliefs-
 preserving way. The proof of existence follows from a slight adaptation of
 the arguments contained in Mertens and Zamir (1985), Brandenburger and
 Dekel (1993), and Heifetz (1993). That is, for every type space O - Hi~N Oi,
 there exists a unique set of measurable mappings

 Si: " -- r.T, iE N,

 that satisfy

 b3(n;(0;))(A) = bi()( (A))
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 FULL SURPLUS EXTRACTION 229

 for every measurable set A C T_i, where r-i:"-i -+ T_i is defined by

 i( )j/i) -- (T= (0j))jM i.

 The universal type set Ti of bidder i e N is isomorphic to the product space

 Vix A(Ti)

 by the mapping

 Thus, in what follows we use the terms Ti and Vi x A(T_i) interchangeably.

 PROOF OF PROPOSITION 1: Suppose that p = ap, + (1 - a)p2, where a E
 (0, 1). We first show that p is non-BDP if either pi or P2 is non-BDP. Suppose,
 without loss of generality that pi is non-BDP. It follows that for some bidder
 i E N there exist two disjoint measurable subsets of i's types, Ai, A' c i, that
 each have a positive pi-probability,

 plli (Ai) > O, pl,i (A'i) > 0,

 and the same range of beliefs,

 bi(Ai) = bi(A') C A( _i),

 but different valuations. That is, if Oi , Ai and 0' e A' are such that

 bi(O') = bi(Oi),

 then

 D3i(6) :A iOi
 It therefore follows that

 ple,(Ai) = apllei (Ai) + (1 - a)p21oi (Ai) > 0,
 ploi(A') = apl.ie(A') + (1 - a)pz,2i(A') > 0,

 which implies that p cannot be a BDP prior.
 We now show that p is BDP if both pi and p2 are BDP. If pl and p2 are BDP

 priors for player i, then by Definition 1 there exist subsets OPk c Oi, k e {1, 2},

 such that ploie,(OPk) = 1 and OPk is the graph of a function ipk :BPk - V, where Bpk is the projection of 0pk on d(Oi).
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 230 A. HEIFETZ AND Z. NEEMAN

 We show that the graph of the function ,i: BPI U BP2 -+ V defined by

 I Pl(bi), biEBP',

 I2(b) (bi), otherwise,
 is assigned probability 1 by plo,. This implies that p is BDP for bidder i.

 This is obvious if BPI B2 = 0, because in this case the graph of Pi is sim-
 ply the union of the graphs of OP' and Pp2. We show that the graph of Pi
 is assigned probability 1 by plo, (and hence p is BDP for bidder i) also if
 BPI n Bp2 = 0. The proof consists of showing that the graphs of P'p and P2
 coincide almost surely on Bp' n Bp2 according to Ploi.

 Pick some bidder j ] i and, for k = 1, 2, denote by

 &Nk = j E Oj: bj(j),(OPk) - 1}
 the set of j's types that assign probability 1 to OPk. Because pk is a common
 prior,

 (3) 1 = p1o (Ok

 hk 1 (dp oj) k b(i)oi(O k) dpkI(j)
 -k"dP , o0+d-Pkweconluode a ) .Pk 0

 Since b1j(Oj)oi(Opk) < 1 on Oj \ OPk, We conclude that PkONk) = 1 (and

 Pk1g (Oj \ Opk) = 0), because otherwise the sum of the two integrals in (3)
 would be smaller than 1.

 Since Pk is a common prior (and OPk c Bpk X V ), it follows that

 S bi(oi)I l(O(kk) ddpk i (i) Pk (O = 1 PB, k xV1

 and hence that bi(Oi)loj(O pk) = 1 for pk,, -almost every 0i E Bfk x Vi. This

 implies that for ploi-almost every 60 E (BPI n B2) x V4 we have b (Oi) oj (Of' 0

 OP2)- 1
 Furthermore, the belief of every Qj e O n &P2 is concentrated on 0pl 0p2

 or

 (j)l o B((BP' n Bp2) x i) = j( j)Po,(OP2) - 1.
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 FULL SURPLUS EXTRACTION 231

 In other words, if Bo = {bi e BP' n l BP2 :P(bi) # Pp2(bi)} is the subset of i's
 belief types in BPI n BP2 on which the graphs Op and 1P2 are disjoint, then
 bj(0j)B e,(Bo x V) = 0. Since p is a common prior, we therefore have

 P 9i(OP' n OP2 - p bj(2j) b i(0)( n OP2) dp2 e (0)

 = fp(((B' ) B2i((B (' B 2) ) dpj(ij

 j (01)nlB2 x b,(6;) BP(Of ) 0 xV2)dple(6)

 = jB 1 dp(Oi d )

 = Pf, ((BP n Bf2) X 1.

 This equality implies that on BP' n Bp2 the graphs of OP1' and c4P2 coincide
 p-almost surely, as required, because if this were not the case on a subset of
 BP' n BP2 with a positive measure according to p, then it would follow that

 plo,(OP' nOfP (2) <po((Bpl Bp2) X ). Q.E.D.
 LEMMA 2: The set B of BDPpriors for bidder i is a Borel subset of the space of

 priors u, on the universal space T, when P, is endowed with a topology at least
 as strong as the topology of weak convergence.

 PROOF: If the lemma obtains when P is equipped with the topology of weak
 convergence, it also obtains for any stronger topology. It is therefore enough
 to proceed by assuming that P~ is equipped with the topology of weak conver-
 gence.

 A prior p e P, is a BDP prior if and only if the marginal of p on Ti = VE x
 A(T_-) is concentrated on a measurable graph of a function Of: B --+ Vi. This
 is expressible by countably many conditions, in the following way.

 Since Vi is separable, there is a countable collection {An} ,n of subsets of 1V
 that is closed under complements and finite unions, and generates the Borel
 sigma-field of 1V. Hence there are also countably many partitions {(1im>),, of 14
 to finitely many disjoint subsets A NSimilarly, t I k=A-l i{A}1. Similarly, since A(Ti)
 is separable, there exists a countable collection {Yi}ej,l of subsets of A(T-i)
 that is closed under complements and finite unions, and generates the Borel

 sigma-field of A(T_,). Hence, there are also countably many partitions {AIn ,l
 of A(T_i) to finitely many disjoint subsets in {y Lk,= {Y?eel.
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 232 A. HEIFETZ AND Z. NEEMAN

 The marginal of p on Ti = 14 x A(Ti) is concentrated on the graph of (PP if, mnNm

 and only if for every partition Fi = { A- ,k of Si,

 p U(Ak x ((P)-'(Ak) xT) = 1.
 \k=1

 Intuitively, as the partitions (F7m)m>l of Vi get finer, the union of the rectangles

 A> x ((P)- (A ) approximates the graph of O increasingly well. INNm Nm

 Now, for each partition Fm - {An"mk = of 1V, {(()-1(A k )k=~ is a partition of A(T_i) that can be approximated arbitrarily well (in terms of the probabil-
 ities assigned to the partition members by the marginal of p on A(T_,)) by

 partitions in {A(nr1. Hence, the marginal of p on Ti= 1V x A(Ts) is concen-
 trated on a measurable graph from A(T7i) to 1V if and only if, for every natural

 number q > 1 and for each partition i =m - {Ank ), of 14, there exists a parti-
 tion A = {Y k }=l of A(Ti) with Lr = Nmi and

 p(U((i Ak xYk x T_)) 1 (k=1 q
 Formally, therefore, the set B of BDP priors is

 nn U PE PupU(Ak X Yi k x x )) 1 I ieN m>l q>l r>1l qk=l

 which is a Borel subset of the space of priors P,. Q.E.D.
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